NAME UGA Id. \qquad Score \qquad
Instruction: Do each problem using one page and show all your work. Put your name on all pages.

- [1]Suppose that a square matrix A is symmetric and positive definite. Show that when applying Gauss-Seidel iteration to solve $A x=b$, the iteration converges.
- [2]Let A be a tridiagonal matrix. Write $A=Q R$ with R being upper triangular matrix and Q orthonormal matrix. Show that $R Q$ is also a tridiagonal matrix.
- [3]Let $f(x)$ be a continuous function over $x \in[0,1]^{n}$ with $n \geq 2$. Explain how to use the bisection method to find a zero inside $(0,1)^{n}$ if f changes sign over some vertices of the cube, say $f(0,0)>0$ and $f(1,1)<0$ for f defined over $[0,1] \times[0,1]$.
- [4]If using the following formula to compute an approximation of $f^{\prime}(x)$:

$$
f^{\prime}(x) \approx \frac{1}{12 h}[-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h)]
$$

find the order of convergence as $h \rightarrow 0$.

- [5]Let $\triangle:=\left\{\cdots \leq x_{-1} \leq x_{0} \leq x_{1} \leq \cdots\right\}$ be a nondecreasing knot sequence. Suppose that $x_{i+m}-x_{i}>0$ for all i. Define the $m^{\text {th }}$ order B-spline functions over \triangle by

$$
B_{i}^{m}(x)=\left(x_{i+m}-x_{i}\right)\left[x_{i}, \cdots, x_{i+m}\right](\cdot-x)_{+}^{m-1}
$$

Show that B-splines satisfy $B_{i}^{m}(x) \geq 0$ for all i and

$$
\sum_{i=k-m+1}^{k-1+j} B_{i}^{m}(x)=1, \quad \forall x \in\left(x_{k}, x_{k+j}\right)
$$

by using induction.

- [6]Derive the modified Euler's method:

$$
x(t+h)=x(t)+h f(t+h / 2, x(t)+f(t, x(t)) / 2)
$$

by performing Richardson's extrapolation on Euler's method using step size h and $h / 2$. Show that the truncated error is $O\left(h^{2}\right)$.

