Numerical Analysis Qualifying Examination

Fall, 2006

Name__________________________

Instruction: Among following ten problems, please do 3 out of Problems 1-4, do 3 out of Problem 6-9, and do Problems 5 and 10. Please start each problem on a separate sheet of paper; write on only one side of the paper, and number each page. The time limit on this exam is three hours.

1. Suppose that a square matrix \(A = [a_{ij}]_{0 \leq i, j \leq n} \) is strictly diagonally dominant in the sense that \(a_{ii} \geq \sum_{j \neq i} |a_{ji}| \) for \(i = 1, \cdots, n \). Show that when applying Gaussian elimination procedure with partial pivoting to solve \(Ax = b \), there is no partial pivoting needed.

2. For any nonsingular matrix \(A \) of size \(n \times n \), denote \(\kappa(A) = \|A\|\|A^{-1}\| \) to be the condition number of \(A \), where \(\| \cdot \| \) is a subordinate (operator) norm.
 (1) Show that \(\kappa(A) \geq 1 \), \(\kappa(\alpha A) = \kappa(A) \) for any nonzero scalar \(\alpha \), and \(\kappa(AB) \leq \kappa(A)\kappa(B) \) for any matrix \(B \) of size \(n \times n \);
 (2) Further show the following
 \[
 \kappa(A) \geq \frac{\|A\|}{\|A - B\|}
 \]
 for any singular matrix \(B \) of size \(n \times n \).

3. Let \(A \) be an invertible matrix and \(\tilde{A} \) be a perturbation of \(A \) satisfying \(\|A^{-1}\| \|A - \tilde{A}\| < 1 \). Suppose that \(x \) and \(\tilde{x} \) are the exact solutions of \(Ax = b \) and \(\tilde{A}\tilde{x} = \tilde{b} \), respectively. Show that
 \[
 \frac{\|x - \tilde{x}\|}{\|x\|} \leq \frac{\kappa(A)}{1 - \kappa(A)\|A - \tilde{A}\|/\|A\|} \left[\frac{\|A - \tilde{A}\|}{\|A\|} + \frac{\|b - \tilde{b}\|}{\|b\|} \right].
 \]

4. Let \(U, \Sigma, V \) be the singular value decomposition(SVD) of \(A \). Let
 \[
 A^+ = V \Sigma^+ U^T
 \]
 be the pseudo inverse of \(A \), where \(\Sigma^+ = \text{diag}\left(\frac{1}{\sigma_1}, \frac{1}{\sigma_2}, \cdots, \frac{1}{\sigma_r}, 0, \cdots, 0\right) \) and \(r \) stands for the rank of \(A \). Show that
 \[
 AA^+A = A \text{ and } (A^+A)^T = A^+A.
 \]

5. Suppose that \(p \) is a root of multiplicity \(m > 1 \) of \(f(x) = 0 \). Show that the following modified Newton's method
 \[
 p_{n+1} = p_n - \frac{mf(p_n)}{f'(p_n)}
 \]
gives quadratic convergence.

[6] Show that the third order finite difference of \(f \) approximates \(f''' \) at the order \(O(h^2) \), i.e.,

\[
\frac{f(a_3) - 3f(a_2) + 3f(a_1) - f(a_0)}{h^3} - \frac{f'''((a_1 + a_2)/2)}{8} = \frac{h^2}{8} f^{(5)}(\xi)
\]

for some \(\xi \in [a_0, a_3] \), assuming \(a_i = a + i \times h, i = 0, 1, 2, 3 \).

[7] Suppose that \(f \in C^4[a, b] \). Prove the following error estimate for the Simpson rule:

\[
\int_a^b f(x)dx - \frac{(b - a)}{6} (f(a) + 4f(\frac{a + b}{2}) + f(b)) = -\frac{(b - a)^5}{2880} f^{(4)}(\xi)
\]

for some \(\xi \in [a, b] \).

[8] Suppose that \(f \in C[a, b] \). Let \(G_n(f) \) be the \(n^{th} \) Gaussian quadrature formula over interval \([a, b]\). That is, let \(\{x_i^{(n)}, i = 1, \ldots, n\} \) be the roots of orthonormal polynomials \(\phi_n \) of degree \(n \) for \(n \geq 1 \). The well-known Gaussian quadrature is defined by

\[
G_n(f) := \sum_{i=1}^{n} f(x_i^{(n)})a_i
\]

with \(a_i = \int_a^b \prod_{j=1}^{n} \frac{x - x_j^{(n)}}{(x_i^{(n)} - x_j^{(n)})} dx, i = 1, \ldots, n \). Show that

\[
G_n(f) \longrightarrow \int_a^b f(x)dx
\]

as \(n \to +\infty \).

[9] Let \(a = x_0 < x_1 < \cdots < x_n < x_{n+1} = b \) be a partition of \([a, b]\). For \(f \in C^1[a, b] \), let \(S_f \) be the \(C^1 \) cubic interpolatory spline of \(f \), i.e.,

\[
S_f(x_i) = f(x_i), S'_f(x_i) = f'(x_i), i = 0, 1, \ldots, n + 1
\]

and \(S_f(x)|_{[x_i, x_{i+1}]} \) is a cubic polynomial, \(i = 0, \ldots, n \). Suppose that \(f \in C^2[a, b] \).

Show that

\[
\int_a^b \left| \frac{d^2}{dx^2} (f(x) - S_f(x)) \right|^2 dx \leq \int_a^b \left| \frac{d^2}{dx^2} f(x) \right|^2 dx.
\]

[10] Consider a single step method \(y_{k+1} = y_k + h\psi(x_k, y_k, h) \) for numerical solution of initial value problem of ODE \(y' = f(x, y) \). Suppose that \(\psi(x, y, h) \) is Lipschitz continuous with respect to \(y \) with Lipschitz constant \(L \). Suppose that the local truncation error of order \(m \), i.e., \(T_k(h) = \frac{y(x_{k+1}) - y(x_k)}{h} - \psi(x_k, y(x_k), h) = O(h^m) \). Show that numerical solution \(y_k \) approximates \(y(x_k) \) in the following sense

\[
|y(x_k) - y_k| \leq e^{(b-a) L} |y(x_0) - y_0| + e^{(b-a) L} \frac{1}{L} C h^m,
\]

for \(k = 1, \ldots, n \).