Problem 1. Both polynomials $P^{(1)}(x) = x^4 - 2x^3 + 2x^2 - 2x + 1$ and $P^{(2)}(x) = x^4 - x^3 + x - 1$ have a root $x^* = 1$. However, the errors between two consecutive Newton’s iterations $e_k^{(i)} = |x_{k+1}^{(i)} - x_k^{(i)}|, k \geq 0$ with $x_0^{(i)} = 1.2$ are shown in the following table for $P^{(i)}, i = 1, 2$:

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 1$</td>
<td>0.910 · 10⁻¹</td>
<td>0.517 · 10⁻¹</td>
<td>0.278 · 10⁻¹</td>
<td>0.145 · 10⁻¹</td>
<td>0.741 · 10⁻²</td>
</tr>
<tr>
<td>$i = 2$</td>
<td>0.152</td>
<td>0.448 · 10⁻¹</td>
<td>0.329 · 10⁻²</td>
<td>0.163 · 10⁻⁴</td>
<td>0.398 · 10⁻⁹</td>
</tr>
</tbody>
</table>

The errors for $P^{(1)}$ decrease much slower.

a) (2 points) Explain the reason for this phenomenon.

b) (2 points) What can be done to accelerate the convergence for the first polynomial $P^{(1)}$?

c) (6 points) Justify your suggestion with a mathematical proof.

Problem 2.

a) (5 points) Define the Gaussian quadrature $G_n(f)$ carefully for a continuous function f.

b) (5 points) State the convergence theorem of the Gaussian quadratures $G_n(f)$ to the integral of f and give a proof.

Problem 3. Suppose that $A \in \mathbb{R}^{n \times n}$ is nonsingular. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ be two vectors. Under what condition is the following matrix

$$
\begin{pmatrix}
0, & \vec{u}^T \\
\vec{v}, & A
\end{pmatrix}
$$

invertible (4 points)? Find the explicit form for the inverse matrix (6 points).

Problem 4. Let

$$U_n(x) := \frac{\sin((n + 1) \arccos x)}{\sqrt{1 - x^2}}, \quad n = 0, 1, 2, \ldots.$$

a) (5 points) Prove that these functions are algebraic polynomials of degree n.
b)(5 points) For integers \(n \neq m \), prove
\[
\int_{-1}^{1} \sqrt{1 - x^2} U_n(x) U_m(x) dx = 0.
\]

Problem 5. Fix \(n \geq 1 \). Let \(B_n \) be a polynomial B-spline of degree \(n \) with integer nodes and support on \([0, n+1]\). Prove that \(\{B_n(x - i)\}_{i=-n}^{N-1} \) are linearly independent on the interval \([0, N]\), \(N \geq 1 \).

Problem 6. An \((n+1)\)-dimensional linear subspace \(H \) of \(C[a,b] \) is called a Haar subspace if each non-zero function in \(H \) has at most \(n \) roots.

Show that the linear span \(H \) of functions \(\{1, x, x^2, \ldots, x^{n-1}, f(x)\} \) is a Haar subspace of \(C([a, b]) \) if the \(n^{th} \) derivative \(f^{(n)}(x) \) of \(f \) is strictly positive on \([a, b]\).

Problem 7. Suppose that the matrix norm \(\| \cdot \| \) is subordinate. Let \(S \) be a non-singular square matrix. Prove or disprove that \(\|A\|_* := \|SAS^{-1}\| \) is also a subordinate norm.

Problem 8. Suppose that a square matrix \(A \) is strictly diagonally dominant. Show that the Gauss-Seidel iteration for the linear system \(Ax = b \) converges.

Problem 9. Consider a single step method \(y_{k+1} = y_k + h\psi(x_k, y_k, h) \) for numerical solution of initial value problem of ODE \(y' = f(x, y) \). Suppose that \(\psi(x, y, h) \) is Lipschitz continuous with respect to \(y \) with Lipschitz constant \(L \). Suppose that the local truncation error of order \(m \), i.e., \(T_k(h) = \frac{y(x_{k+1}) - y(x_k)}{h} - \psi(x_k, y(x_k), h) = O(h^m) \). Show that numerical solution \(y_k \) approximates \(y(x_k) \) in the following sense
\[
|y(x_k) - y_k| \leq e^{(b-a)L}|y(x_0) - y_0| + \frac{e^{(b-a)L} - 1}{L} Ch^m,
\]
for \(k = 1, \ldots, n \).

Problem 10. Consider a linear least squares problem:
\[
\min \|Ax - b\|^2,
\]
where \(A \) is a matrix of size \(m \times n \) with \(m > n \) and \(b \) of size \(m \times 1 \). (a) Use the SVD to describe how to solve the least square problem (5 points), and (b) explain why your method works (5 points).