Summary of 'A Simple Proof of the Restricted Isometry Property for Random Matrices'

Lucas Connell

October 27, 2017

We will be restricting our attention to section 5 of the paper. A few notes before we begin:

- Φ will always be an $n \times N$ matrix whose elements are iid draws from a subgaussian distribution.
- For some such Φ , with $\epsilon \in (0, 1)$, it is known that for any $x \in \mathbb{R}^N$ there exists a $c_0(\epsilon)$ such that:

$$\Pr(\|\Phi x\|_{l_{2}^{n}}^{2} - \|x\|_{l_{2}^{N}}^{2}| \ge \epsilon \|x\|_{l_{2}^{N}}^{2}) \le 2e^{-nc_{0}(\epsilon)}$$
(1)

- Given $T \subseteq \{1, 2, ..., N\}$, we denote by Φ_T the matrix obtained by selecting only the columns of Φ indexed by the elements of T. Note here that Φ_T is an $n \times \#(T)$ matrix.
- Given $T \subseteq \{1, 2, ..., N\}$ and $x \in \mathbb{R}^N$, we denote by x_T the vector in $\mathbb{R}^{\#(T)}$ whose elements are from x at the indices provided in T.

1 Introduction and Strategy

Firstly, Φ satisfies the Restricted Isometry Property of order k if $\exists \delta_k \in (0, 1)$ such that

$$(1 - \delta_k) \left\| x_T \right\|_{l_2^N}^2 \le \left\| \Phi_T x_T \right\|_{l_2^N}^2 \le (1 + \delta_k) \left\| x_T \right\|_{l_2^N}^2$$
(2)

for all T with $\#(T) \leq k$.

Loosely speaking, our goal is to show that Φ satisfies the Restricted Isometry Property with high probability. Our strategy towards showing this is as follows:

• From R^N , we reduce our attention to a kdimensional subspace X_T .

- Using elementary results from covering numbers, we can find a finite set of elements Q_T ($\#Q_T \leq (\frac{12}{\delta})^k$) such that for any $x \in X_T$, there's a q less than $\frac{\delta}{4}$ away.
- Using the concentration of measure from (1), we establish an upper bound for the probability of Restricted Isometry Property failing in any of our k-dimensional subspaces.
- Using union bounds to combine probabilities, we ultimately find an upper bound on the probability of our Φ failing the RIP given any k.

2 Section 2

Fix a $k \leq N$. For a given

$$T := \{i_1, i_2, ..., i_t : t \le k\} \subseteq \{1, 2, ..., N\}$$

define:

$$X_T := \{ [x_1, x_2, ..., x_N] : x_i = 0 \text{ for } i \notin T \}$$

or, the set of all vectors in \mathbb{R}^N whose entries are 0 if their index is not in T. This is clearly a k-dimensional linear subspace of \mathbb{R}^N .

Lemma 2.1. Given any set of indices T where #(T) = k < n and $\delta \in (0, 1)$:

$$(1-\delta) \|x\|_{l_2^N} \le \|\Phi x\|_{l_2^n} \le (1+\delta) \|x\|_{l_2^N} \qquad (3)$$

for any $x \in X_T$ with probability

$$\geq 1 - 2(\frac{12}{\delta})^k e^{-c_0(\frac{\delta}{2})n} \tag{4}$$

Proof. Because Φ is linear, we can reduce our attention to only $x \in X_T$ such that $||x||_{l^N} \leq 1$. It is known that we can select a set $Q_T \subseteq X_T$ of points such that $\|q\|_{l_2^N} \leq 1$ for all $q \in Q_T$ and for any $x \in X_T$ where $||x||_{l^N} = 1, \exists q \in Q_T$ such that

$$x \in B_{\frac{\delta}{4}}(q)$$

i.e. given any $x \in X_T$ with norm 1, there's a $q \in Q_T$ "close by".

It is further known that we can choose this set such Now, since $||x||_{l_2^N} \leq 1$ we have that that $\#(Q_T) \leq (\frac{12}{\delta})^k$.

We know that for a given $q \in Q_T$, (1) holds with $\epsilon = \frac{\delta}{2}$ i.e.

$$\Pr(\left\| \left\| \Phi x \right\|_{l_{2}^{n}}^{2} - \left\| x \right\|_{l_{2}^{N}}^{2} \right\| \ge \left(\frac{\delta}{2}\right) \left\| x \right\|_{l_{2}^{N}}^{2} \le 2e^{-nc_{0}(\frac{\delta}{2})}$$

and hence, applying a union bound to all $q \in Q_T$, of which there are no more than $(\frac{12}{\delta})^k$:

$$\Pr(\exists q \in Q_T, | \|\Phi q\|_{l_2^n}^2 - \|q\|_{l_2^n}^2 | \ge (\frac{\delta}{2}) \|q\|_{l_2^n}^2) \le 2e^{-nc_0(\frac{\delta}{2})} (\frac{12}{\delta})^k$$

Via complements:

$$(1 - \frac{\delta}{2}) \|q\|_{l_2^N}^2 \le \|\Phi q\|_{l_2^N}^2 \le (1 + \frac{\delta}{2}) \|q\|_{l_2^N}^2$$
 (5)

with probability

$$\geq 1 - 2(\frac{12}{\delta})^k e^{-c_0(\frac{\delta}{2})n}$$

which is the precisely the bound (4) specified in our lemma. Now we will use the inequalities found in (5)to expand this bound to all $x \in X_T$.

From (5) we can see that:

$$(1 - \frac{\delta}{2}) \, \|q\|_{l_2^N} \le \|\Phi q\|_{l_2^n} \le (1 + \frac{\delta}{2}) \, \|q\|_{l_2^N}$$

We define A to be the smallest number with the property that

$$\|\Phi x\|_{l_2^n} \le (1+A) \, \|x\|_{l_2^N}$$

for all $x \in X_T$. Picking a $q \in Q_T$ such that $x \in B_{\frac{\delta}{4}}(q)$ and using the linearity of Φ :

$$\begin{split} \|\Phi x\|_{l_2^n} &= \|\Phi(q+x-q)\|_{l_n^n} \\ &= \|\Phi(q) + \Phi(x-q)\|_{l_2^n} \end{split}$$

And now by the triangle inequality we see:

$$\|\Phi(q) + \Phi(x-q)\|_{l_2^n} \le \|\Phi(q)\|_{l_2^n} + \|\Phi(x-q)\|_{l_2^n}$$

And now, since $x - q \in X_T$, and since $||q||_{l_2^N} \leq 1$ we actually have that

$$\|\Phi(q)\|_{l_2^n} + \|\Phi(x-q)\|_{l_2^n} \le (1+\frac{\delta}{2}) + (1+A)\frac{\delta}{4}$$

$$\|\Phi x\|_{l_2^n} \le (1 + (\frac{\delta}{2} + (1+A)\frac{\delta}{4})) \|\Phi x\|_{l_2^n}$$

and hence, since A is the smallest real such that $\|\Phi x\|_{\ell_2^n} \le (1+A) \, \|x\|_{\ell_2^N}$

$$A \leq \frac{\delta}{2} + (1+A)\frac{\delta}{4}$$
$$(\frac{12}{\delta})^{k} = \frac{2\delta}{4} + \frac{\delta}{4} + A\frac{\delta}{4}$$
$$\iff A(1-\frac{\delta}{4}) \leq \frac{3\delta}{4}$$
$$\iff A \leq \frac{3\delta}{4(1-\frac{\delta}{4})} = \frac{3\delta}{4-\delta} \leq \frac{3\delta}{3} = \delta$$

And so we see that $A \leq \delta$ which implies second inequality of (3).

To see the first inequality of (3), notice that

$$\begin{split} \|\Phi x\|_{l_{2}^{n}} &\geq \|\Phi(q)\|_{l_{2}^{n}} + \|\Phi(x-q)\|_{l_{2}^{n}} \\ &\geq (1-\frac{\delta}{2}) - (1+\delta)\frac{\delta}{4} \\ &\geq 1-\delta \end{split}$$

We will now apply this lemma to show that Φ satisfies the Restricted Isometry Property of order k with high probability.

Theorem 2.2. For a given $\delta \in (0,1)$, $\exists c_1, c_2 \in \mathbb{R}$ such that with a probability greater than $1-2e^{-c_2n}$, Φ will satisfy the Restricted Isometry Property of order $k \le \frac{c_1 n}{\log(\frac{N}{k})}.$

Proof. We know that there are only $\binom{N}{k} \leq (\frac{eN}{k})^k$ possibilities for the k-dimensional subspace discussed in Lemma 2.1. So for any $x \in \mathbb{R}^N$ we see that by using a union bound to combine probabilities:

$$(1-\delta) \, \|x\|_{l_2^N} \le \|\Phi x\|_{l_2^n} \le (1+\delta) \, \|x\|_{l_2^N}$$

fails to hold with a probability of no more than

$$2(\frac{eN}{k})^k (\frac{12}{\delta})^k e^{-c_0(\frac{\delta}{2})n} = 2e^{-c_0(\frac{\delta}{2})n+k[\log(\frac{eN}{k})+\log(\frac{12}{\delta})]}$$

Thus we see by picking

$$0 < c_2 \le c_0(\delta) - c_1 \left[1 + \left(1 + \frac{\log(\frac{12}{\delta})}{\log(\frac{N}{k})}\right)\right]$$

and since $k \leq \frac{c_1 n}{\log(\frac{N}{k})}$, we have that

$$\begin{aligned} &-c_{0}(\frac{\delta}{2})n + k[\log(\frac{eN}{k}) + \log(\frac{12}{\delta})] \\ &\leq -c_{0}(\frac{\delta}{2})n + \frac{c_{1}n}{\log(\frac{N}{k})}[\log(\frac{eN}{k}) + \log(\frac{12}{\delta})] \\ &= -n[c_{0}(\frac{\delta}{2}) - c_{1}(\frac{1}{\log(\frac{N}{k})})[\log(e) + \log(\frac{N}{k}) + \log(\frac{12}{\delta})]] \\ &= -n[c_{0}(\frac{\delta}{2}) - c_{1}[\frac{\log(e)}{\log(\frac{N}{k})} + 1 + \frac{\log(\frac{12}{\delta})}{\log(\frac{N}{k})}]] \\ &\leq -n[c_{0}(\frac{\delta}{2}) - c_{1}[1 + (1 + \frac{\log(\frac{12}{\delta})}{\log(\frac{N}{k})})]] \\ &\leq -nc_{2} \end{aligned}$$

And so, we have shown $\exists c_1, c_2 > 0$ such that, so long as $k \leq c_1(\frac{n}{\log \frac{N}{k}})$, then our randomly generated Φ fails to satisfy the Restricted Isometry Property of order k with probability less than $2e^{-c_2n}$. Hence by complements, Φ will satisfy the Restricted Isometry Property of order k with probability greater than $1 - 2e^{-c_2n}$.