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Overview

We will discuss compressive sensing, and, in particular, the viability of
using random matrices.
An outline:

Introduce some vector notation and terminology
Discuss Compressive Sensing

Review probability

Define random matrices and concentration of measure

Define an e-covering number, and prove a short lemma

©0 0000

Use these tools to prove our main result
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Vector Notation

The EQ’ norm of a vector x € RV is defined as

(2, Ixil")’l’ if 0< p< oo

1 if p =
_7maxN|x,| if p=o00

i=1,...,

Ixley =
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Definition (Sparsity)
We say a vector x € RN is k-sparse if #{i : x; # 0} < k
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Vector Notation

The EQ’ norm of a vector x € RV is defined as

(2, Ixil")’l’ if 0< p< oo

1 if p =
_7maxN|x,| if p=o00

i=1,...,

Ixley =

Definition (Sparsity)
We say a vector x € RN is k-sparse if #{i : x; # 0} < k

In RN, with a fixed k < N and given a set
T ={i, .k} €{1,2,..., N} of indices, we define

X7 = {[x1,x0, ..., xn] T i x; =0fori ¢ T}

which is a k-dimensional subspace of RV
We similarly define x1
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Examples

Example (Sparse Vectors)

Let
-3 0
4 0
x=|0 and y= |0
2 1
0 0

X Is 3-sparse.
y is 1-sparse.

Example (X7 Subspace)

Consider R®, and set T = {1,2,4}.
X1 = {[x1,%,0,%,0] " : x1,%, x4 € R}
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Motivation

In many applications, one wants to solve

®x = b where x € RV is k - sparse, ® e R™N_ and n << N
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In many applications, one wants to solve
®x = b where x € RV is k - sparse, ® e R™N_ and n << N
This can be quite hard, and we instead solve:

argmin Hx||4v , such that x =b (1)
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In many applications, one wants to solve
®x = b where x € RV is k - sparse, ® e R™N_ and n << N
This can be quite hard, and we instead solve:

argmin Hx||4v , such that x =b (1)

Theorem (Candes and Tao, “Decoding by linear programming”, 2005)

Suppose b = dx, with x k-sparse. If ® has the Restricted Isometry
Property of order 2k, then X is the unique solution to (1)
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In many applications, one wants to solve
®x = b where x € RV is k - sparse, ® e R™N_ and n << N

This can be quite hard, and we instead solve:

argmin ”XHZ{V , such that x =b (1)

Theorem (Candes and Tao, “Decoding by linear programming”, 2005)

Suppose b = ®x, with X k-sparse. If ® has the Restricted Isometry
Property of order 2k, then X is the unique solution to (1)

Theorem (Candes and Tao, “Near-optimal signal recovery from
random projections: Universal encoding strategies?”, 2006)

If & € R™N s a subgaussian random matrix with n > cklog (%), then ®
satisfies the RIP of order k with overwhelming probability.
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Probability Review

Definition (Random Variable)

A (real) random variable returns a real number with some probability
determined by a probability distribution function.

Example: Let X ~ N(0,1) (standard normal distribution)

Figure: Pr[X > 1] = .15866
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Probability Review

Subgaussian Random Variable: A subgaussian random variable X is a

random variable whose distribution function's tails decay exponentially
fast. Or, more precisely, for any t € R:

2

PriiX —u|l >t] < 2e 27

/ N\

Figure: Blue is standard normal; orange is subgaussian. Notice the red area
(subgaussian) is less than the green area (standard normal)
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Probability Review

Union Bounds: Given random variables X1, X5, we know

Pr(Xi1 >t or Xo > t] < Pr[Xy > t] + Pr[X2 > t]. The same inequality
holds for any finite number of random variables.

Let X1, X2, ..., Xm ~ N(0,1) be independent. Using a finite union bound:

Pr[X; > t for at least one i = 1,2,...,m| < Z Pr(X; > t] = mPr[Xy > t]
i=1
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Concentration of Measure

The sum of (independent) random variables concentrates around the mean.

08

06

04

02

00

i=1

Figure: Blue is standard normal; orange is

where Xi, ..., X5 ~ N(0,1)
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Definition (Random Matrix)

A random matrix, ® € R"™N s 3 matrix whose entries, ¢ij, are each
(independent) random variables.
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Definition (Random Matrix)

A random matrix, ® € R"™N s 3 matrix whose entries, ¢ij, are each
(independent) random variables.

Theorem (Subgaussian Random Matrix)

Letting q € RN, € € (0,1), and ® be an n x N matrix with entries
¢ij ~ N(0,1), this concentration results in 3co(€) > 0 with:

Prl(1 o) lally < ol < (14 ) lally fail] < 267700
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Covering Numbers

Definition (e-Covering Number e-Packing Number)

@ c-covering number: N(U, €) = min n such that 3{q1, g2, ..., gn}
with the property

n

@ c-packing number: P(U,€) = max m such that 3{q1, q2, ..., gm}
with the property d(qi, q;) > €, Yi # j

Figure: A space, U Figure: A space, V
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Covering Numbers

Definition (e-Covering Number e-Packing Number)

@ c-covering number: N(U, €) = min n such that 3{q1, g2, ..., gn}
with the property

n

@ c-packing number: P(U,€) = max m such that 3{q1, q2, ..., gm}
with the property d(qi, q;) > €, Yi # j

Figure: An e-cover of our space U Figure: An e-packing in our space V
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An Upper Bound for the e-Covering Number of a Unit Ball

Lemma (Upper Bound for Covering of a Unit Ball in R¥)
If U is the unit ball in R* and € € (0,1), N(U,€) < (2)*
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An Upper Bound for the e-Covering Number of a Unit Ball

Lemma (Upper Bound for Covering of a Unit Ball in R¥)
If U is the unit ball in R* and € € (0,1), N(U,€) < (2)*

It is known that N(U,€) < P(U,€), so we bound the e-packing number.
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An Upper Bound for the e-Covering Number of a Unit Ball

Lemma (Upper Bound for Covering of a Unit Ball in R¥)
If U is the unit ball in R* and € € (0,1), N(U,€) < (2)*

It is known that N(U,€) < P(U,€), so we bound the e-packing number.
Let {q1, g2, ..., gm} be an optimal e-packing. Hence

U B:(qi) C B1:(0)
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An Upper Bound for the e-Covering Number of a Unit Ball

Lemma (Upper Bound for Covering of a Unit Ball in R¥)
If U is the unit ball in R* and € € (0,1), N(U,€) < (2)*

It is known that N(U,€) < P(U,€), so we bound the e-packing number.
Let {q1, g2, ..., gm} be an optimal e-packing. Hence

U B:(qi) C B1:(0)
Since d(qi, qj) > €, Vi # j, these balls are actually disjoint. Taking volume
Vol [L__JlBg(q, ] Zvo/[ (qi ] — mCy (5)

< Vol [BH-;(O)] = Ck (1 + E>k
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An Upper Bound for the e-Covering Number of a Unit Ball

Lemma (Upper Bound for Covering of a Unit Ball in R¥)
If U is the unit ball in R* and € € (0,1), N(U,€) < (2)*

It is known that N(U,€) < P(U,€), so we bound the e-packing number.
Let {q1, g2, ..., gm} be an optimal e-packing. Hence

U B:(qi) C B1:(0)

Since d(qi, qj) > €, Vi # j, these balls are actually disjoint. Taking volume
Vol [L_Jl B: (q:) ] Z Vol [ (qi ] — mC, (5)

< Vol [BH-;(O)] = Ck (1 + %)k

. : : k k
Rearranging these results ultimately yields: m < (£5€)" < (3)

— €
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The Restricted Isometry Property (RIP)

Definition
We say a matrix ® satisfies the RIP of order k if 30, € (0,1) such that,
for any T with #(T) < k

(1= 6k) IxT ey < llexrllzy < (1+6i) llxr 7y (2)

Our goal is now to show that a random matrix, ¢ with entries from a
subgaussian distribution, satisfies the RIP of order k with overwhelming

probability.
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Major Theorem (See also)

Theorem (Candes and Tao, “Near-optimal signal recovery from
random projections: Universal encoding strategies?”, 2006)

Given § € (0,1), Jc1, 2 € RT such that & satisfies the RIP of order k
with probability greater than 1 — 2e=%", provided n > c1 k log (%)

!Baraniuk et al., "A Simple Proof of the Restricted Isometry Property for Random
Matrices” .
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Major Theorem (See also)

Theorem (Candes and Tao, “Near-optimal signal recovery from
random projections: Universal encoding strategies?”, 2006)

Given § € (0,1), Jc1, 2 € RT such that & satisfies the RIP of order k
with probability greater than 1 — 2e=%", provided n > c1 k log (%)

@ Fix a k satisfying the hypothesis, let T be a set of indices with

#(T) = k. Note here that there are (',\(’) choices for T. Now consider
Br = Xrn 51(0)

!Baraniuk et al., "A Simple Proof of the Restricted Isometry Property for Random
Matrices” .
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Major Theorem (See also)

Theorem (Candes and Tao, “Near-optimal signal recovery from
random projections: Universal encoding strategies?”, 2006)

Given § € (0,1), Jc1, 2 € RT such that & satisfies the RIP of order k
with probability greater than 1 — 2e=%", provided n > c1 k log (%)

@ Fix a k satisfying the hypothesis, let T be a set of indices with

#(T) = k. Note here that there are (',\(’) choices for T. Now consider
Br = Xrn 51(0)

@ By our Lemma on covering numbers, can pick %-covering

. 12\ ¥
QT = {qla RS} Qa} Wlth « S (5

!Baraniuk et al., "A Simple Proof of the Restricted Isometry Property for Random
Matrices” .
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@ Via concentration of measure, for a given g; € Q7:

0 1) . —neo( 8
Pri(1-3) lalle < 100l < (1+3) lally fis| < 267D
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@ Via concentration of measure, for a given g; € Q7:

0 0 neo( 8
P (1-3) lally < 19ails < (143 ) laily fois| < 2677()

@ Using a union bound on our finite number of points:

4] 0
Pr Kl — > lglly < gl < <1 + ) Iqlloy fails fora q € QT}

<2 ({f) )
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@ Via concentration of measure, for a given g; € Q7:

0 0 neo( 8
P (1-3) lally < 19ails < (143 ) laily fois| < 2677()

@ Using a union bound on our finite number of points:

4] 0
Pr Kl — > lglly < gl < (1 + ) Iqlloy fails fora q € QT}

<9 ({f) e—o(3)

@ From this, one can show:

Pr[(l —0) IxllZy < lox]17 < (14 6) |Ix|[Zy fails for an x € XT]

<2 (152) el )
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. k . .
@ Since there are (’L’) < (2¥)" such k-dimensional subspaces, use a
union bound to see

Prl (1= ) IxlBy < 0x1F; < (14 9) ey s for an x < [ 7
-

5 ({f)k (f)k erneo(2) _ pa—nea(3)-+klioe( ) log( )]
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. k . .
@ Since there are (’,\(l) < (2¥)" such k-dimensional subspaces, use a
union bound to see

Prl (1= ) IxlBy < 0x1F; < (14 9) ey s for an x < [ 7
-

5 ({f)" (f)k erneo(2) _ pa—nea(3)-+klioe( ) log( )]

@ By picking some constant ¢, and taking the complement,
prlvx e Uxr (1-9) Il < oxly < (140 el
-

>1—2e "

Which is to say: ¢ satisfies the RIP of order k specified in the
theorem with at least the above probability.
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Summary

@ Want to compress a high-sparse vector, in a way where we can
recover it with little-to-no error.

How do we compress it?

Compressing with a subgaussian matrix ¢ allows for unique
f1-minimization; an accurate recovery

How small can we compress?

We can pick n logarithmic to N.
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