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Overview

We will discuss compressive sensing, and, in particular, the viability of
using random matrices.
An outline:

1 Introduce some vector notation and terminology

2 Discuss Compressive Sensing

3 Review probability

4 Define random matrices and concentration of measure

5 Define an ε-covering number, and prove a short lemma

6 Use these tools to prove our main result
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Vector Notation

The `Np norm of a vector x ∈ RN is defined as

‖x‖`Np :=


(∑N

i=1 |xi |p
) 1

p
if 0 < p <∞

max
i=1,...,N

|xi | if p =∞

Definition (Sparsity)

We say a vector x ∈ RN is k-sparse if #{i : xi 6= 0} ≤ k

In RN , with a fixed k ≤ N and given a set
T = {i1, i2, ..., ik} ⊆ {1, 2, ...,N} of indices, we define

XT := {[x1, x2, ..., xN ]T : xi = 0 for i 6∈ T}

which is a k-dimensional subspace of RN

We similarly define xT
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Examples

Example (Sparse Vectors)

Let

x =


−3
4
0
2
0

 and y =


0
0
0
1
0


x is 3-sparse.
y is 1-sparse.

Example (XT Subspace)

Consider R5, and set T = {1, 2, 4}.
XT := {[x1, x2, 0, x4, 0]T : x1, x2, x4 ∈ R}
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Motivation

In many applications, one wants to solve

Φx = b where x ∈ RN is k - sparse, Φ ∈ Rn×N , and n << N

This can be quite hard, and we instead solve:

argmin ‖x‖`N1 , such that Φx = b (1)

Theorem (Candes and Tao, “Decoding by linear programming”, 2005)

Suppose b = Φx , with x k-sparse. If Φ has the Restricted Isometry
Property of order 2k , then x is the unique solution to (1)

Theorem (Candes and Tao, “Near-optimal signal recovery from
random projections: Universal encoding strategies?”, 2006)

If Φ ∈ Rn×N is a subgaussian random matrix with n ≥ ck log
(
N
k

)
, then Φ

satisfies the RIP of order k with overwhelming probability.
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Probability Review

Definition (Random Variable)

A (real) random variable returns a real number with some probability
determined by a probability distribution function.

Example: Let X ∼ N (0, 1) (standard normal distribution)

Figure: Pr [X ≥ 1] = .15866
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Probability Review

Subgaussian Random Variable: A subgaussian random variable X is a
random variable whose distribution function’s tails decay exponentially
fast. Or, more precisely, for any t ∈ R:

Pr [|X − µ| ≥ t] ≤ 2e−
t2

2σ2

Figure: Blue is standard normal; orange is subgaussian. Notice the red area
(subgaussian) is less than the green area (standard normal)
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Probability Review

Union Bounds: Given random variables X1,X2, we know
Pr [X1 ≥ t or X2 ≥ t] ≤ Pr [X1 ≥ t] + Pr [X2 ≥ t]. The same inequality
holds for any finite number of random variables.

Example

Let X1,X2, ...,Xm ∼ N (0, 1) be independent. Using a finite union bound:

Pr [Xi ≥ t for at least one i = 1, 2, ...,m] ≤
m∑
i=1

Pr [Xi ≥ t] = mPr [X1 ≥ t]
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Concentration of Measure

The sum of (independent) random variables concentrates around the mean.

Figure: Blue is standard normal; orange is

5∑
i=1

Xi

5

where X1, ...,X5 ∼ N (0, 1)
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Random Matrix

Definition (Random Matrix)

A random matrix, Φ ∈ Rn×N , is a matrix whose entries, φi ,j , are each
(independent) random variables.

Theorem (Subgaussian Random Matrix)

Letting q ∈ RN , ε ∈ (0, 1), and Φ be an n × N matrix with entries
φi ,j ∼ N (0, 1n ), this concentration results in ∃c0(ε) > 0 with:

Pr
[
(1− ε) ‖q‖2`N2 ≤ ‖Φq‖2`n2 ≤ (1 + ε) ‖q‖2`N2 fails

]
≤ 2e−nc0(ε)
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Covering Numbers

Definition (ε-Covering Number ε-Packing Number)

1 ε-covering number: N(U, ε) = min n such that ∃{q1, q2, ..., qn}
with the property

U ⊆
n⋃

i=1

Bε(qi )

2 ε-packing number: P(U, ε) = max m such that ∃{q1, q2, ..., qm}
with the property d(qi , qj) > ε, ∀i 6= j

Figure: A space, U Figure: A space, V
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An Upper Bound for the ε-Covering Number of a Unit Ball

Lemma (Upper Bound for Covering of a Unit Ball in Rk)

If U is the unit ball in Rk and ε ∈ (0, 1), N(U, ε) ≤ (3ε )k

It is known that N(U, ε) ≤ P(U, ε), so we bound the ε-packing number.
Let {q1, q2, ..., qm} be an optimal ε-packing. Hence

m⋃
i=1

B ε
2
(qi ) ⊆ B1+ ε

2
(0)

Since d(qi , qj) > ε, ∀i 6= j , these balls are actually disjoint. Taking volume

Vol

[
m⋃
i=1

B ε
2
(qi )

]
=

m∑
i=1

Vol
[
B ε

2
(qi )

]
= mCk

( ε
2

)k
≤ Vol

[
B1+ ε

2
(0)
]

= Ck

(
1 +

ε

2

)k
Rearranging these results ultimately yields: m ≤

(
2+ε
ε

)k ≤ (3ε )k
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The Restricted Isometry Property (RIP)

Definition

We say a matrix Φ satisfies the RIP of order k if ∃δk ∈ (0, 1) such that,
for any T with #(T ) ≤ k

(1− δk) ‖xT‖2`N2 ≤ ‖ΦxT‖2`n2 ≤ (1 + δk) ‖xT‖2`N2 (2)

Our goal is now to show that a random matrix, Φ with entries from a
subgaussian distribution, satisfies the RIP of order k with overwhelming
probability.
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Major Theorem (See also1)

Theorem (Candes and Tao, “Near-optimal signal recovery from
random projections: Universal encoding strategies?”, 2006)

Given δ ∈ (0, 1), ∃c1, c2 ∈ R+ such that Φ satisfies the RIP of order k
with probability greater than 1− 2e−c2n, provided n ≥ c1k log

(
N
k

)

Fix a k satisfying the hypothesis, let T be a set of indices with
#(T ) = k . Note here that there are

(N
k

)
choices for T . Now consider

BT := XT ∩ B1(0)

By our Lemma on covering numbers, can pick δ
4 -covering

QT = {q1, ...,qα} with α ≤
(

12

δ

)k

1Baraniuk et al., “A Simple Proof of the Restricted Isometry Property for Random
Matrices”.
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Via concentration of measure, for a given qi ∈ QT :

Pr

[(
1− δ

2

)
‖qi‖`N2 ≤ ‖Φqi‖`n2 ≤

(
1 +

δ

2

)
‖qi‖`N2 fails

]
≤ 2e−nc0( δ

2 )

Using a union bound on our finite number of points:

Pr

[(
1− δ

2

)
‖q‖`N2 ≤ ‖Φq‖`n2 ≤

(
1 +

δ

2

)
‖q‖`N2 fails for a q ∈ QT

]
≤ 2

(
12

δ

)k

e−nc0( δ
2 )

From this, one can show:

Pr

[
(1− δ) ‖x‖2`N2 ≤ ‖Φx‖2`n2 ≤ (1 + δ) ‖x‖2`N2 fails for an x ∈ XT

]
≤ 2

(
12

δ

)k

e−nc0( δ
2 )
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Since there are
(N
k

)
≤
(
eN
k

)k
such k-dimensional subspaces, use a

union bound to see

Pr

[
(1− δ) ‖x‖2`N2 ≤ ‖Φx‖2`n2 ≤ (1 + δ) ‖x‖2`N2 fails for an x ∈

⋃
T

XT

]

≤ 2

(
12

δ

)k (eN

k

)k

e−nc0( δ
2 ) = 2e−nc0( δ

2 )+k[log( eN
k )+log( 12

δ )]

By picking some constant c2 and taking the complement,

Pr

[
∀x ∈

⋃
T

XT , (1− δ) ‖x‖2`N2 ≤ ‖Φx‖2`n2 ≤ (1 + δ) ‖x‖2`N2

]
≥ 1− 2e−nc2

Which is to say: Φ satisfies the RIP of order k specified in the
theorem with at least the above probability.
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Summary

Want to compress a high-sparse vector, in a way where we can
recover it with little-to-no error.

How do we compress it?

Compressing with a subgaussian matrix Φ allows for unique
`1-minimization; an accurate recovery

How small can we compress?

We can pick n logarithmic to N.
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