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a b s t r a c t

Cycling index is an important ecological indicator used in ecosystem analysis. The higher

the cycling in an ecosystem, the higher the utilization of mass and energy within the system

before it is lost due to respiration and other factors. For a stock-flow type ecosystem model at

steady state, Finn’s cycling index (FCI) can be computed using simple matrix algebra. How-

ever, it is difficult to measure how well this index represents the actual cycling occurring in

the system. In this paper, we study cycling in ecological networks using an individual based

approach (particle tracking algorithm). This new simulation method provides access to the

pathway data of individual particles that flow in the system, therefore one can quantify
Simulation

Individual based

Flow analysis

Food web

cycling using this pathway data quite literally. We used particle tracking simulations (PTS)

to compute a cycling index using Finn’s idea of flux based cycling. Our simulation based

results (using no matrix algebra) agree with Finn’s cycling index, verifying the accuracy of

both the PTS, and the original linear algebraic formulation of FCI.

cycling is to measure the flux of nutrient in the system (TST) as
Ecosystem modeling

1. Introduction

Cycling of nutrients, biomass or energy within ecosystems
is an essential feature of these systems. Cycling is identi-
fied by Odum (1969) as a measure of maturity of a system.
Odum observes that mature systems, as compared to devel-
oping ones, have a greater capacity to retain nutrients through
cycling. Cycling of Carbon, however, can be a sign of a more
stressed community, and appears to be a counter-indicator
of ecosystem health (Wulff and Ulanowicz, 1989; Costanza
and Norton, 2002). Nevertheless, amount of cycling within an
ecosystem can be an important indicator of ecosystem health,
and a useful diagnostic in the design of environmental impact
statements (May, 1981).
Finn (1976) developed an index, a quantitative descrip-
tion of cycling in ecosystems. He later modified his index,
where the new index was a normalized version of the previ-
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ous one, ranging between 0 and 1 (Finn, 1980). Ulanowicz (1983)
described a different method, where he decomposed the net-
work into weighted cyclic and non-cyclic (tree) sub-networks.
Patten and Higashi (1984) extended Finn’s index to incorpo-
rate not only the flow of nutrients among compartments, but
also the storage of nutrients within compartments. Based on
Finn’s original work, Han (1997) defined the cycling matrix,
measuring interactions among compartments due to cycling.
Finn’s cycling index (FCI) was further improved by Allesina and
Ulanowicz (2004) to include all fluxes generated by cycling.
They defined the comprehensive cycling index (CCI), which is
cumbersome to compute, but is correlated with FCI.

Most studies related to cycling in ecosystems are based on
Finn’s original work (Finn, 1976). Finn’s approach to quantify
a whole, and identify the portion of this flux (TSTc) that is due
to cycling. Finn’s cycling index is then defined as the fraction
of flux that is cycled relative to the total system flux (Finn,
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Fig. 1 – Ecosystem model representing Calcium flows in the
Hubbard Brook temperate forest ecosystem, Hubbard Brook,
e c o l o g i c a l m o d e l l i n g

980). FCI is formulated as a linear algebraic expression based
n the flow rates among compartments, and environmental

nputs and outputs. An interesting question is “How well does
his algebraic expression represent the actual cycling in an
cosystem?”

This is a difficult question to answer, unless there is a way
o label each nutrient molecule, and track their locations as
hey flow in the system. Cycling information can be derived
rom the individual path history of all nutrients that have
een a part of the system. This is not only an impossible
xperiment to perform in real life, but also an impracticable
imulation to run on a computer. However, if one is allowed
o use identities larger than individual molecules, there is a
easible numerical method that accomplishes exactly what
e have described. “Particle tracking algorithm” (Tollner and
azanci, 2007; Kazanci and Tollner, in preparation) is a numer-

cal simulation method where each energy (or mass) packet is
abeled and tracked in time as it flows through the network.
he flow history of each and individual particle is recorded,

herefore this method is computationally intensive. However,
t enables us to investigate many interesting ecological net-
ork properties, such as cycling, residence time, and indirect

ffects (Higashi and Patten, 1986).
In this paper, we compute FCI without using matrix algebra,

first since its original development.1 We use Finn’s original
dea of defining the cycling index as a fraction of fluxes that
ontain cycling (Finn, 1976). The only difference is that we have
ccess to pathway data of all particles that have been in the
ystem. We can then skip all approximations, and compute
recisely the fraction of flux due to cycling, a luxury made
ossible by recent mathematical developments and modern
omputers. We describe the details of this computation, and
ompare our results to the algebraic formulation FCI in Sec-
ion 4.2, followed by a discussion of feasibility and accuracy
f this new approach. Finally, we discuss new opportunities
ade possible by the particle tracking algorithm.

. Models and methods

.1. Ecosystem model

n this section, we introduce the ecosystem model type that
inn’s work is applicable to, and then develop the mathemati-
al equations necessary to compute FCI. The ecosystem mod-
ls we study have a network structure, with many interactions
mong multiple identities. Identities (compartments, stocks,
nd nodes) can range from accumulated organic matter to
undreds of species, depending on the focus and complexity
f the particular model. Interactions represent flow of energy,
iomass, or a specific element such as C, N or P. For sake of
implicity and uniformity, we will use the term “nutrient” to

escribe the entity that flows among compartments.

In Fig. 1, we show an example model, the Calcium flows
n the Hubbard Brook temperate forest ecosystem. Depend-
ng on the topology of the system, nutrients can flow between

1 Ulanowicz (1983) has also studied cycling in ecological net-
orks without resorting to matrix algebra.
New Hampshire, USA (Finn, 1980).

any two compartments in the system. For example, in Fig. 1,
Calcium can not flow directly from canopy into wood. However,
a portion of the Calcium flowing out of canopy might get into
wood via litter and soil. To form a mathematical description of
such an ecosystem model, we define the following parameters:

fij: flow rate of nutrients from compartment j to compartment
i
zi: rate of environmental input to compartment i
yi: rate of environmental output from compartment i
xi: storage value of compartment

Based on these parameters, we define the corresponding
flow matrix F, input vector z, output vector y, and the storage
vector x as follows:

F =

⎡
⎢⎣

f11 · · · f1n

...
. . .

...
fn1 · · · fnn

⎤
⎥⎦ z =

⎡
⎢⎣

z1

...
zn

⎤
⎥⎦ y =

⎡
⎢⎣

y1

...
yn

⎤
⎥⎦ x =

⎡
⎢⎣

x1

...
xn

⎤
⎥⎦ .

For an evolving ecosystem, all parameters defined above may
be varying in time, hence each will be a function of time. We
can construct a differential equation for the change of storage
value of compartment k (ẋk = dxk/dt) as follows:

ẋk =
n∑

j=1

fkj + zk

︸ ︷︷ ︸
input to xk

−
n∑

j=1

fjk − yk

︸ ︷︷ ︸
output from xk

. (1)

This equation is valid for all compartments (k = 1, 2, . . . , n),
therefore the storage value functions xk(t) are defined by the
system of differential equations in (1).

2.2. Throughflow analysis
Throughflow value Tk (or Tout
k

) is the rate at which nutrients
move through compartment k. It is defined as the sum of flows
from compartment k to other compartments and to the envi-
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Fig. 2 – A weighted directed graph representing the amount
in kg/ha/yr of Calcium that flows in the Hubbard brook
temperate forest ecosystem (Finn, 1980). The numbers
besides the arrows represent flow (fij), input (zk) and output
(yk) rates at steady state. Throughflow of each
compartment, and the total system throughflow (TST) is

For further information on the throughflow matrix N, and
indicated.

ronment:

Tk =
n∑

j=1

fjk + yk. (2)

In other words, the throughflow Tk is the total flow that leaves
compartment k at a given time. Tk accounts for each flow that
enters compartment k and does not contribute to storage (xk).
As such, Tk is a measure of the activity at compartment k.
Similarly, total system throughflow (TST), is the sum of all
compartmental throughflows in the system:

TST =
n∑

k=1

Tk. (3)

Therefore TST accounts for the total activity in the system at a
given time. In Fig. 2, we show the flow, input, output, through-
flow, and TST values for the Hubbard brook ecosystem model
(Finn, 1980).

Combining Eqs. (1) and (2), we get

ẋk =
n∑

j=1

fkj + zk − Tk. (4)

If each internal flow fij is expressed as a fraction (gij) of
throughflow Tj of the donor compartment, then we define gij

as follows:

gij = fij

Tj
or fij = gijTj. (5)
Note that by definition, we have 0 ≤ gij ≤ 1 for all i, j = 1, . . . , n.
Therefore the matrix G =

[
gij

]
n×n

can be viewed as a normal-

ized version of the flow matrix F =
[
fij

]
n×n

. Combining Eqs. (4)
2 0 ( 2 0 0 9 ) 2908–2914

and (5), and rearranging terms, we get

zk − ẋk = Tk −
n∑

j=1

gkjTj.

We can rewrite this equation in matrix form as follows:

z − ẋ = (I − G)T

where I represents the identity matrix of size n × n, and T =
[Ti]n×1 is a column vector of throughflows. Assuming that the
matrix I − G is invertible, we get the following equation:

N(z − ẋ) = T, N = (I − G)−1.

If we further assume that the ecosystem operates near steady
state (ẋ ≈ 0), the equation above becomes simpler:

Nz = T.

Note that at steady state, N, z and T are all constants. Therefore
the matrix N is actually a linear mapping from the input vector
z to the throughflow vector T:

N : z �→ T.

In other words, we can calculate the throughflow T generated
by any input vector � by computing N �. For example:

N

⎡
⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

N11

N21

...
Nn1

⎤
⎥⎥⎦ = T̄.

Here, the vector T̄ represents the throughflow generated
at each compartment by a hypothetical unit input to the
first compartment. As an example, T̄3 = N31 represents the
throughflow generated at compartment 3 by a unit input to
compartment 1. Note that the compartments 1 and 3 need
not be directly connected to each other for the value of N31 to
be positive. In other words, F31 = 0 < N31 is possible if there is
an indirect flow from compartment 1 to compartment 3, such
as

1 → 2 → 3.

In general, Nij represents the throughflow generated at com-
partment i by a unit input to compartment j over all possible
pathways . Assuming that the system is near steady state, we
expect that Nii ≥ 1, as a unit input to compartment i will also
be leaving that compartment at the same rate, and hence will
generate a unit throughflow. But then how can Nii be larger
than 1, not just be equal to 1? Consider the following case
where some fraction of a unit input to compartment i cycles
and comes back to itself. In this case, compartment i will
be experiencing a throughflow value of larger than 1 for a
unit input to itself. Finn (1976) uses this exact idea to con-
struct his cycling index, that Nii − 1 represents the amount of
throughflow generated at compartment i through cycling in
the ecosystem.
Network Environ Analysis (NEA) in general, we refer the reader
to Patten et al. (1976), Patten (1978), Fath and Patten (1999), and
Patten (1992).
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are stored in compartments continuously change.
Ecosystem models are open systems, therefore new par-

ticles will be introduced in the system continuously. Each of
these new particles will have new tags, therefore the parti-
e c o l o g i c a l m o d e l l i n g

. Finn’s cycling index

inn defines his cycling index as the fraction of the total sys-
em throughflow (TST) that is generated through cycling:

CI = TSTc

TST
(6)

e measures TST and TSTcusing the linear algebraic develop-
ent explained in Section 2.2. Algebraically, FCI is defined as a
eighted sum of cycling efficiencies of all compartments in the

cosystem, where

ycling efficiency of compartment i : Ci = Nii − 1
Nii

(7)

n other words, Ci is the ratio of the throughflow generated at
ode i through cycling only. Then the cycled portion of total
ystem throughflow is

STc =
n∑

k=1

CkTk. (8)

or an ecosystem model at steady state, Finn’s cycling index
s algebraically defined as follows:

CI =
n∑

i=1

Ti

TST
· Nii − 1

Nii
. (9)

ote that the term (Ti/TST) represents the fraction of the total
ctivity of the system driven by compartment i. Therefore the
ycling efficiency of a more active compartment has a higher
nfluence on the cycling index.

. Simulation based cycling index

inn’s idea of quantifying cycling in an ecosystem is to mea-
ure the fraction of the total system throughflow (TST) that is
ue to cycling (6). Most studies related to cycling in ecosys-
ems are based on Finn’s original work (Finn, 1976), and use

atrix algebra to study and quantify cycling, as described in
receding sections. Following the idea of Finn, we propose a
rastically different way to compute the cycling index. Our
ethod consists of a simple counting algorithm, and is based

n the output of a “particle tracking” simulation (Kazanci and
ollner, in preparation; Tollner and Kazanci, 2007). Unlike most
revious methods (Allesina and Ulanowicz, 2004; Finn, 1980;
atten and Higashi, 1984; Han, 1997), no matrix algebra is used
n the process. Flexibility of the particle tracking algorithm
nables us to implement Finn’s idea of computing cycling
ndex accurately. Here are the questions that we investigate
n this paper:

Suppose that there is a “super microscope” that enables
s to see and track individual molecules (or quanta of energy)

hat flow in the ecosystem. If we use Finn’s idea of cycling (just
he idea, not the algebraic definition) and the data obtained
y this “super microscope”, would the results agree? In other
ords, how well does the algebraic definition (9) reflect the
( 2 0 0 9 ) 2908–2914 2911

actual cycling in the ecosystem? Are there “better” ways to
quantify cycling in an ecosystem, given the incredible resolu-
tion this “super microscope” provides? How would this new
method compare to FCI?

4.1. Particle tracking algorithm

First, we would like to describe what “particle tracking algo-
rithm” is. In short, it is an individual based simulation method
(also known as agent based models) that deduces its rules
(on how an individual particle will move) automatically from
the differential equation representation (1) of the ecosystem
model. Therefore the time courses of compartment storage
values and flow rates agree with the differential equation
simulation. This is mathematically a challenging task, so we
refer the reader to Tollner and Kazanci (2007) and Kazanci and
Tollner (in preparation) for more information.

Perhaps the easiest way to demonstrate how particle track-
ing works is to show the output of a sample simulation. In
Fig. 3, we show one of the outputs of a particle tracking simula-
tion for the Hubbard brook ecosystem model (Fig. 2). A particle
represents a unit amount of the flow currency specific to the
model, which may be N, C, P, energy, biomass, etc. Particle
Tracking algorithm assigns a unique label to each particle, and
tracks their movement, and records this data in text files.

A differential equation simulation tracks the storage val-
ues of compartments changing over time. Particle tracking
algorithm tracks the same information. Furthermore, it also
identifies which particles form the storage value of each com-
partment. For example, the differential equation simulation
will inform us that the storage value of compartment Litter at
time t = 14.3 is 23.7 kg/ha. If a particle is defined initially as
100 g/ha, particle tracking simulation (PTS) will give the spe-
cific tags of all 237 particles that are contained in compartment
Litter at time t = 14.3.

If a system is at steady state, there will be no changes in
storage values, therefore the differential equation simulation
will give constant values for storage values over time. There-
fore an ODE simulation creates the illusion that the system
has “stopped”. In fact the system is still active and working,
but rate of input and output of each compartment stays equiv-
alent in time. Particle tracking simulations enable us to see this
activity hidden by ODE solutions. For a steady state ecosystem
model, PTS will demonstrate that although the storage values
of compartments stay constant, the names of particles that
Fig. 3 – Partial output of a particle tracking simulation for
the Hubbard brook ecosystem model shown in Fig. 2.
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Table 1 – The partial particle pathway data from Fig. 4 is
used to compute an approximate cycling index for the
model in Fig. 2. Each compartment visit contributes to
total system throughflow, therefore the values in TST
column are computed by simply counting the number of
compartments visited by each particle. Compartments
visited by a particle more than once are underlined. The
values in the last column represent throughflows that
contribute to cycling, and are computed by simply
counting the number of underlined compartments
visited by each particle. The simulation based cycling
index is then computed as follows:
FCI = TSTc/TST ≈ 45/67 ≈ 0.67.

Particle Pathway TST TSTc

12144 0 2 3 3 0
12152 3 1 0 3 1 0 3 1 02 3 1 0 2 3 1 0 3 18 14
12141 3 1 0 2 3 1 0 2 3 1 0 3 12 8
12153 3 1 0 3 1 02 3 8 4
12156 3 1 0 2 3 1 0 2 3 9 5
2912 e c o l o g i c a l m o d e l l i

cle tag numbers will increase during a simulation. However
particles will also dissipate from the ecosystem to the envi-
ronment. PTS cleverly recycles the memory freed by dissipated
particles, records their data in text files (stored in computer’s
hard drive), and reuses this available memory for new parti-
cles. Through the extensive use of such computational tricks,
a PTS will take only a few seconds to run.

Particle tracking algorithm is a sophisticated, accurate, and
yet, a feasible numerical simulation method. For further infor-
mation, we refer the interested reader to Tollner and Kazanci
(2007) and Kazanci and Tollner (in preparation). Next, we
explain how one can compute cycling index using PTS.

4.2. Cycling index via particle tracking simulation

The output of PTS shown in Fig. 3 is not easy to utilize for
cycling index computation. In Fig. 4, we show another output
of PTS which is more suitable for our purpose. This output con-
tains the pathways of all particles that are either in the system,
or have dissipated from the system. We define the pathway of
a particle as an ordered list of compartments visited by that
particle. We use the pathway data of many particles to com-
pute an approximate value for the cycling index. The more the
number of particle pathways, the more accurate this approx-
imate cycling index is.

Fig. 4 shows the pathway data of seven particles. Next,
we demonstrate how we can compute Finn’s cycling index
based on the pathway data of these seven particles. Note that
only seven particle pathways is not sufficient to get an accu-
rate estimate for cycling index, so this computation is for
demonstration purposes only. Finn defines his cycling index
as follows:

FCI = TSTc

TST
. (10)

The total system throughflow (TST) accounts for each time
a particle moves from one compartment to another, or to
the environment. Therefore TST can be computed by count-
ing the number of compartments visited by each particle.
The cycled portion (TSTc) of TST accounts for the total sys-

tem throughflow that occurs due to cycling. We can compute
TSTc by counting each time that a particle moves out of a
compartment which was visited by that particle previously.
Table 1 shows the calculation of TST, TSTc, and FCI using the

Fig. 4 – Partial output of particle tracking simulation for the
Hubbard brook ecosystem model shown in Fig. 2. Here, the
numbers 0, 1, 2and 3correspond to compartments Canopy,
Wood, Litter, and Soil respectively. For example, Particle
12,144 moved from compartment Canopy to Soil, and then
to Wood.
12154 3 1 0 2 3 1 0 2 3 1 0 2 3 13 9
12155 3 1 0 3 4 1

Total: 67 45

PTS output from Fig. 4. Using these partial pathway data, we
approximate the Finn’s cycling index as follows:

FCI = TSTc

TST
≈ 45

67
≈ 0.67.

Note that we did not use Finn’s algebraic definition of
cycling index 9 which was based on the matrix N. Actually, we
did not use any linear algebra at all. All we used was a simple
counting algorithm and the output of a particle tracking sim-
ulation. We still call it “Finn’s cycling index”, because we did
use Finn’s original idea of formulating his cycling index, that
FCI = (TSTc/TST). Then we investigate whether Finn’s matrix
based definition (9) agree with this computational version.

Note that PTS is a stochastic method, therefore each run
generates different pathway data for the same model. Com-
puting an approximate value for FCI based on a stochastic
method raises some issues about the stability and accuracy
of the computation itself:

1. How does the cycling index vary with respect to the amount
of pathway data used?

2. What is the minimum number of pathways needed to
obtain an accurate cycling index?

3. How does the computed cycling index change when we run
multiple instances of the simulation?

4. How does this approximate cycling index value compare to
the original FCI?

We address all the above questions through Fig. 5. Particle
tracking algorithm is a stochastic numerical method, there-
fore each simulation looks slightly different. Furthermore, it
provides only an approximation for FCI, it is not an exact
computation. In Fig. 5, we see that the PTS based FCI ranges
between 0.76 and 0.82 among four PTS runs, when only 100

particle pathway data are used. The oscillations in the simu-
lation based FCI die out as the number of pathways used in the
computation increases. Moreover the discrepancy between
the values for multiple runs vanishes for higher number of
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Fig. 5 – Finn cycling index is computed using the pathway
data generated by four different Particle Tracking
Simulations (PTS) for the same model, the Hubbard Brook
temperate forest ecosystem model. PTS is a stochastic
simulation method, therefore each run generates different
pathway data. The x− axis represents the amount of
p

p
a

o
m
r
n
w
a
i
m

e
m
P
w
c
c
1
t

5

T
a
K
v
i
p
i
d

e

Fig. 6 – Comparison of particle tracking simulation (PTS)
based cycling index and Finn’s cycling index (FCI) over a
collection of 22 ecosystem models of sizes ranging from 4
athway data used to approximate the FCI.

athways. Therefore particle tracking algorithm proves to be
feasible method for accurate computation of cycling index.

During a PTS run, particle pathway data keep accumulating
ver time. Therefore longer PTS runs are required to obtain
ore particle pathway data, which is needed for accuracy. This

aises a question of feasibility: How much computing time is
eeded to compute the PTS based FCI accurately? The answer
ill depend on the model. In general, 20,000 particle pathways

re enough to compute FCI within 0.1% error. For most models,
t takes less than a second for PTS to generate these data on a

odern single CPU computer.
In general, individual based models are built specific to an

cosystem. PTS however, is ready to use with any ecosystem
odel with a differential equation representation. Actually,

TS uses the exact same model input format as EcoNet soft-
are (Kazanci, 2007)(http://eco.engr.uga.edu). In Fig. 6, we

ompare the simulation based FCI to the original FCI over a
ollection of 22 ecosystem models of sizes ranging from 4 to
2 compartments. The collection includes both aquatic and
errestrial networks, both published and unpublished.

. Discussion

he work we present in this paper is the first application of
new method, the Particle Tracking Algorithm (Tollner and
azanci, 2007; Kazanci and Tollner, in preparation). It is a
ery capable tool, as it provides access to pathway history of
ndividual particles (Fig. 3). This comprehensive data output
rovides a framework suitable for study of many interest-
ng properties regarding ecosystems, such as residence time,
ominance of indirect effects, thermodynamics etc.

However, rather than trying to study a new aspect of
cosystems, we chose to re-investigate a well-known prop-
to 12 compartments.

erty, Finn’s cycling index. To define cycling index, Finn uses
a deterministic continuous process (a differential equation)
and linear algebra. In contrast, we use a stochastic process
(particle tracking algorithm) and a basic counting algorithm
on pathway history of particles. The fact that both methods
agree does not only demonstrate that PTS is an accurate, fea-
sible and capable individual based method, but also confirms
that Finn’s linear algebraic definition of his cycling index is an
accurate description of his initial cycling idea (TSTc/TST).

Furthermore, we observe that one can only acquire a snap-
shot of the ecosystem, and the exchange of currency over that
period of time occurs along pathways of finite length. There-
fore, using matrix algebra might overestimate the amount of
currency exchange during that period of time. Since parti-
cle tracking algorithm simulate the real time flow of currency
in the ecosystem, it offers a way to evaluate (accurately) the
activity of the ecosystem over given period of time.

The study of FCI, a well-known property, rather than a new
aspect of ecosystems, enabled us to focus on the feasibility,
accuracy and convergence properties of this new sophisticated
simulation method. The encouraging results show that we can
safely rely on particle tracking algorithm to study system level,
organizational and dynamic behavior of ecosystems.

An important aspect of particle tracking algorithm is that
the ecosystem model need not be at steady state. PTS is capa-
ble to run ecosystem models that evolve in time. Based on
such PTS output, we can compute an average cycling index for
ecosystems that evolve because of an ongoing climate change,
or are subject to periodic (seasonal, day to day) changes. Fur-
thermore, it seems feasible to compute cycling index over a
time window, and advance this window in time to obtain a
dynamic cycling index.
We should further emphasize the most essential property
of PTS, that it is fully compatible with the differential equation
representation of the ecosystem model. Note that it is possi-
ble to construct a similar numerical method that labels and

http://eco.engr.uga.edu
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moves particles among compartments, like PTS. However, the
dynamic behavior of this method will probably be different
than the differential equation representation, unless careful
attention is given to its compatibility with the master equation
(Gillespie, 1992, 2000). Therefore any ecosystem property com-
puted using such a simulation method will probably result in
different value than the differential equation based formula-
tion.

We believe that differential equation representation of
ecosystems preserve causality. An individual based method
that behaves differently than the differential equation repre-
sentation requires further attention. On the other hand, PTS
provides compatible simulation results with the differential
equation representation, and gives detailed information about
the ecosystem behavior, dynamics and organization.
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