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a  b  s  t  r  a  c  t

Ecological  network  analysis  measures  such  as  cycling  index,  indirect  effects,  and  storage  analysis  pro-
vide  insightful  information  on  ecosystem  organization  and  function,  which  can  be  extremely  useful  for
environmental  management  and control.  These  system-wide  measures  focus  on  indirect  relations  among
system compartments,  providing  a  holistic  approach.  Unfortunately,  the  application  of  these  useful mea-
sures  are  restricted  to steady  state  models.  Seasonal  changes,  environmental  impacts,  and  climate  shifts
are not  accommodated  by the  current  methodology,  which  greatly  limits  their  application.  The  novel
methodology  introduced  in  this  paper  extends  the  application  of  these  useful  but limited  measures  to
dynamic  compartmental  models.  This  method  relies  on network  particle  tracking  simulation,  which  is
an  agent  based  algorithm,  whereas  the  current  methods  utilize  steady-state  flow  rates  and  compartment
storage  values.  We  apply  this  new  methodology  to storage  analysis,  which  quantifies  how  much  storage
is  generated  at any  compartment  within  the  system  by a  unit  external  input  into  another  compartment.
Also  called  compartmental  mean  residence  time,  this  measure  is  widely  used  in  environmental  sciences,

pharmacokinetics  and  nutrition,  to assess  the  interaction  between  system  boundary  (e.g. drug  intake,
pollution,  feeding)  and  internal  compartments  (e.g.  tissues,  crops,  species).  Storage  analysis  is  chosen  for
demonstration  because  it is  applicable  to a limited  class  of dynamic  models  (linear  and  donor-controlled),
which  gives  us an  opportunity  to verify  our  new  method.  The  methodology  introduced  here  is also  appli-
cable  to Finn’s  cycling  index,  indirect  effects  index,  throughflow  analysis,  and  possibly  other  network

 as  w
analysis  based  indicators

. Introduction

Compartmental models are widely used to represent liv-
ng systems, such as genetic networks, biochemical pathways,
nd ecosystems. Various software products (Clauset et al., 1987;
amsey et al., 2005; Kazanci, 2007) exist for modeling real-life phe-
omena, with built-in simulation and analysis tools. These models
nable researchers to capture system-wide behavior, which may
e counter-intuitive and difficult to predict. Such behavior is gen-
rally due to the inherent complexity of network models. Effects
f indirect connections among compartments and feedback cycles
ften exceed the effects of direct connections, producing unex-
ected behavior: a predator can have a significant positive effect
pon its prey (Bondavalli and Ulanowicz, 1999); a protein may  have
 negative auto-regulatory role on its own expression (O’hare and
ayward, 1985). Various measures have been identified that cap-

ure system-wide properties and function of network models, such
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as connectivity distribution (Jeong et al., 2000), response to per-
turbations (Ueda et al., 2004), cycling (Finn, 1976; Kazanci et al.,
2009), indirect effects (Higashi and Patten, 1986; Patten, 1995),
ascendency (Ulanowicz, 1986; Patten, 1995; Patrício et al., 2004),
etc. Some of these measures were based on economic input–output
analysis (Hannon, 1973; Patten et al., 1976a; Finn, 1976).

An important system-wide property, storage analysis (Matis
and Patten, 1981; Hearon, 1981; Fath and Patten, 1999), traces the
storage value of a compartment back to the system input. Storage
analysis consists of a matrix S, which is a linear map  from system
boundary inputs (z) to compartment storage values (x). In particu-
lar, Sij represents how much storage is generated in compartment
i by a unit boundary input into compartment j, through all direct
and indirect connections. Storage analysis is potentially useful for
research in environmental sciences (Mackay and MacLeod, 2002),
pharmacokinetics (Cheng and Jusko, 1988; Plusquellec and Houin,
1990), ecology (Matis and Patten, 1981) and nutrition (Green and
Green, 1990), where compartmental models are heavily utilized
to assess the interaction between system boundary and internal

compartments.

Traditionally, storage analysis has been useful for studying
systems at steady state. However, this methodology is not appli-
cable to evolving systems, which limits its application, as many

dx.doi.org/10.1016/j.ecolmodel.2012.05.021
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
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mailto:maqian12@uga.edu
dx.doi.org/10.1016/j.ecolmodel.2012.05.021


l Modelling 242 (2012) 180– 188 181

e
m
w
s
f
t
i
t
t
H

(
a
p
1
a
W
f
b
i
(
t

2

r
T
e
p
a
g
t
s

S

w
t
v

e
t
a

w

C

t
i
e
n

c
t

Filter Feeders

Deposited
Detritus

Deposit
Feeders 

Microbiota

Meiofauna

Predators
C. Kazanci, Q. Ma / Ecologica

ssential and interesting issues involve change, such as environ-
ental impacts, climate change, and regime shifts. In this paper,
e present a novel simulation-based definition for storage analy-

is matrix S. This new definition agrees with the current definition
or steady state systems. However, the new definition is applicable
o dynamic, evolving systems, greatly increasing the applicabil-
ty of this useful methodology. Beyond dynamic storage analysis,
his new approach also provides an arbitrarily close approximation
o input based residence time distribution (Yu and Wehrly, 2004;
earon, 1972).

The new definition is based on network particle tracking
NPT) (Kazanci et al., 2009) simulations, an agent-based method
pplicable to compartmental models. NPT simulations have been
reviously used to study Finn’s cycling index (Finn, 1977, 1978,
982) and throughflow analysis (Patten, 1978). Similar to storage
nalysis, both measures are only applicable to steady state systems.
hile similar simulation-based definitions have been developed

or these two  measures (Kazanci et al., 2009; Matamba et al., 2009),
oth are only valid for steady state systems. Methodology described

n this paper can be applied to any simulation-based measure
including Finn’s cycling index and throughflow analysis), to extend
heir application to evolving, dynamic systems.

. Storage analysis and residence time

Storage analysis (Matis and Patten, 1981) investigates the
elation between input flows and compartment storage values.
he storage matrix S represents a linear mapping between the
nvironmental input rates and the final storage values of each com-
artment. For instance, given one unit of mass or energy input to

 system at compartment j, Sij represents how much storage is
enerated at compartment i as a result of this input. The linear rela-
ionship between environmental input rates and storage values at
teady state is described by the following equation:

z = x∗ (1)

here z = [z1, . . .,  zn]T is the vector of environmental input flow rates
o each compartment, and x* is a vector of the steady state storage
alues of all compartments.

Traditionally, storage analysis has provided a way of studying
cosystem models at steady state. This useful but limited applica-
ion of storage analysis is due to the way it is defined using linear
lgebra, as follows (Matis and Patten, 1981; Fath and Patten, 1999):

dx

dt
= C x + z (2)

here

ij =

⎧⎪⎨
⎪⎩

Fij

xj
, i /= j

−Ti

xi
, i = j

Here, Fij represents the flow rate from compartment j to i at
ime t. Throughflow Ti = zi +

∑
kFik represents the rate of total

nput a compartment receives from other compartments and the
nvironment. For donor controlled systems, C stays constant. For

on-donor controlled systems, C is a function of x.

For an ecosystem model at steady state, the storage values of all
ompartments remain constant over time and the rate of change of
hese values equal to zero (dx/dt = 0). This leads to the derivation of
Fig. 1. Network diagram of the intertidal oyster reef ecosystem model (Dame and
Patten, 1981) is shown. Flow units are in kcal/m2/day, storage units are in kcal/m2.
The diagram is created by EcoNet (Kazanci, 2007, 2009). The model in EcoNet format
is  presented in Appendix A.

the storage analysis matrix as a function of C, which also remains
constant over time:

0 = Cx∗ + z

−Cx∗ = z

x∗ = −C−1︸︷︷︸
=S

z
(3)

This way, the storage analysis matrix S is determined exclusively
by the flow rates (F) and steady state storage values (x*), and is
independent of initial conditions or environmental input flow rates.

We use the intertidal oyster reef ecosystem model (Patten,
1986) shown in Fig. 1 as an example to demonstrate storage anal-
ysis. Simulating the oyster reef ecosystem model using EcoNet
(Kazanci, 2007, 2009; Schramski et al., 2011), we get the S matrix
shown in Table 1. The first row of S contains all zeroes except for the
first term because Filter feeders do not receive input from any other
compartment. All other entries are nonzero, meaning that energy
flows from any compartment to any other through direct or indi-
rect pathways. S12 = 24.04 represents that a unit of input to Filter
feeders contributes to Deposited detritus 24.04 units of storage over
time. For further information on storage analysis or computing S
for steady state models is available in Fath and Patten (1999) and
Patten (1978).

Storage analysis is related to residence time, which quantifies
how long a given substance remains in a particular compartment of
a biogeochemical cycle. For ecosystems, residence time represents
the amount of time the flow material spends in a certain compart-
ment, which is associated with storage value of this compartment
and the flow rates to connected compartments. For steady state
systems, it is computed as the ratio of compartment storage value

to throughflow (xi/Ti).

Storage analysis could be considered as a “more detailed” res-
idence time measure, one which is environmental input based
and compartment specific. Indeed, the term “compartmental mean
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Table 1
Storage analysis matrix S shown for the intertidal oyster ecosystem model shown in Fig. 1.

Filter feeders Deposited detritus Microbiota Meiofauna Deposited feeders Predators

Filter feeders 48.07 0 0 0 0 0
Deposited detritus 24.04 62.17 12.43 34.93 49.28 29.52
Microbiota 0.06 0.15 0.33 0.08 0.12 0.07
Meiofauna 0.58 1.50 0.72 3.69 1.19 0.71

r
m

3

y
l
t
f
S

3

K
w
t
F
o
fi
c
f
c
t
m

i
m
m
t
c
(
w
t
e

c
fl
o
w
p
m
t
a
m
i
d

i
i
p
i
a
a

Deposited feeders 0.39 1.00 
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esidence time” is also used to represent the same storage analysis
atrix S (Eisenfeld, 1981).

. A stochastic measure of storage

In this section, we describe a simulation based storage anal-
sis matrix S. This is a completely different approach than the
inear algebraic definition in Eq. (3),  and is based on network par-
icle tracking (NPT) simulations. We  describe NPT in Section 3.1,
ollowed by the NPT based storage analysis matrix definition in
ection 3.2.

.1. Network particle tracking (NPT)

Network particle tracking (NPT) (Tollner and Kazanci, 2007;
azanci et al., 2009) is an individual based simulation method,
here discrete “packets” of material or energy are labeled and

racked in time as they flow through the model compartments (see
ig. 2). In addition to tracking the storage values of compartments
ver time (as occurs in a differential equation model), NPT identi-
es which individual particles represent the storage values of each
ompartment at any given time. The method is particularly use-
ul at steady state, where differential equation solutions indicate
onstant storage values over time, giving the illusion that the sys-
em has stopped, whereas NPT will demonstrate the continuous

ovement of particles.
What sets NPT apart from similar individual based algorithms

s: (1) NPT deduces its rules on how an individual particle will
ove directly from the differential equation representation of the
odel. This eliminates the need for extra parameters or decisions

hat are required to build most individual-based models. Therefore,
ausality is preserved. (2) Based on Gillespie’s stochastic algorithm
Gillespie, 1977), NPT is a stochastic method that is compatible
ith the master equation (Gillespie, 1992, 2000). In other words,

he average of many NPT simulations agrees with the differential
quation solution.

NPT starts with breaking initial stocks or input flows into dis-
rete packets which we call particles. For example, for a Nitrogen
ow model, a particle could represent a Nitrogen atom. Next, based
n flow rates, NPT determines which flow is likely to occur and
hen. A particle is then chosen randomly from the donor com-
artment and introduced to the recipient compartment. Ecosystem
odels are open systems and therefore new particles enter the sys-

em continuously. So if the chosen flow is an environmental input,
 new particle is labeled and introduced to the recipient compart-
ent. NPT keeps the record of pathway history of all particles,

ncluding when and where each particle movement occurs. This
ata is dumped into a text file after the simulation ends.

In Fig. 3, we show a sample NPT simulation output for the
ntertidal oyster reef ecosystem model (Patten, 1986). The results
nclude pathway, flow time and residence time data. We  define the

athway of a particle as an ordered list of compartments vis-

ted by that particle. Flow time indicates the exact time when
 particle flows from one compartment (or the environment) to
nother one (or the environment). Simulation start time is set as the
1.23 1.07 7.28 0.47
1.32 1.14 7.79 101.52

reference (t = 0). Time units are defined by the model, therefore
depend on the model. For the oyster reef model, time units are
days. This work does not focus on a particular model. Therefore, we
simply use the generic term time units (tu). Residence time repre-
sents how long a particle stays in a particular compartment it visits.
Therefore it is defined as the difference between two consecutive
flow time values. For example, Fig. 3 indicates that Particle 144
enters compartment 1 at t = 0.5 tu and leaves at t = 9.7 tu. Hence its
residence time at compartment 1 is 9.2 tu.

3.2. NPT based storage analysis

To compute the storage analysis matrix S using NPT, we  need
both the pathway and the residence time data. Recall that Sij rep-
resents the amount of storage generated at compartment i by a
unit environmental input into compartment j. Next, we show the
computation of S61 using the NPT data shown in Fig. 3:

Note that all three particles enter the ecosystem at Filter feeders
(compartment 1), and S61 represents how much storage is created
by these particles at Predators (compartment 6). Only two  out of
the three particles (144 and 146) end up visiting compartment 6,
and they stay for 7.6 and 6.7 tu respectively. Therefore:

S61 ≈ 7.6 + 0 + 6.7
3

= 4.77 (4)

Deposited detritus (compartment 2) get visited more than Preda-
tors, and all three particles visit this compartment at least once
before they exit the system. Therefore we  can compute S21 as fol-
lows:

S21 ≈ (7.1)  + (9.5 + 5.5) + (4.2 + 7.0)
3

= 11.1 (5)

There is a significant discrepancy between the values we  have just
computed above (S61 ≈ 4.77, S21 ≈ 11.1) and the values given in
Table 1 (S61 = 1.87, S21 = 24.04). This is mainly due to our compu-
tation being based on only three pathways. NPT is a stochastic
simulation method, therefore the NPT based computation of S is
an approximation. However, any desired accuracy can be achieved
by using more pathways. We  address accuracy and convergence
issues towards the end of this section.

Actually, the process of computing S is slightly more involved,
because rarely an ecosystem model will have environmental inputs
into all its compartments. For example, computing S42 for the oyster
reef ecosystem model poses a problem because no particle enters
Deposited detritus (compartment 2) from the environment.

In order to compute the full S matrix, we  use the Markov
assumption that whether a particle enters a compartment from
the environment, or from another compartment, it will behave
the exact same way  afterwards (Barber, 1978a,b; Higashi, 1986).
In other words, past pathway history of a particle does not affect
its future behavior. Therefore we  need not make any distinction

between environmental inputs and inter-compartmental inputs to
compute S using the NPT simulation output. To utilize this idea,
we treat each particle pathway as multiple pathways as shown in
Fig. 4. Applying this expansion to all three pathways in Fig. 3 results
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Entered Phyto. at time=21.2 units.
Moved to Zoo. at time=34.5 units.
Entered Fish at time=124.6 units.
Has been in Fish for 0.3 units.

Entered Phyto. at time=74.5 units.
Has been in Phyto for 24.7 time units.

Was initially at Phyto (time=0 units).
Moved to Fish at time=67.6 units.
Exited the system at time=91.1 units.

Passport of Particle 14
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4666
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717
212
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Passport of Particle 44
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Passport of Particle 236

14
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New particles from
the environment

Fish

ZooplanktonPhytoplankton

Fig. 2. Three-compartment model depicting particles and their transport information. A record of the trajectory and timing of each particle from its entry to (potentially) its
exit  is given in the particle “passports”.

21 *65Particle *

0.5 9.7 16.8 20.4 27.2 34.8
Residence time 9.2 7.1 3.6 6.8 7.6

144

Particle

145

Particle

146

*42521*

*65432421*

Pathway

Pathway

1.2 10.3 19.8 28.0 33.5 41.6Flow time

Residence time 9.1 9.5 8.2 5.5 8.1

Flow time 2.3 9.2 13.4 17.2 24.2 33.5 39.6 44.1 50.8

Residence time 6.9 4.2 3.8 6. 1 4.57.0 9.3 6.7

Pathway 4

Flow time

Fig. 3. Partial output of a network particle tracking (NPT) simulation is shown for the intertidal oyster reef ecosystem model (see Fig. 1). Numbers 1–6 correspond to
compartments Filter Feeders, Deposited Detritus, Microbiota, Meiofauna, Deposited Feeders 

residence time data for each particle. “*” represents the environment. NPT tracks all pa
environment. A typical NPT simulation contains more than 105 particle pathways. In gen
with  a single dual core CPU).

*65421*

*6

*65*

*654*

542 *6*

*65421*

*

Fig. 4. To compute storage analysis matrix S, each pathway in NPT output is viewed
as multiple pathways as shown above. Here, pathway of particle 144 from Fig. 3 is
e
e

i
i
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w
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xpanded into five separate pathways. Such expansion enables us to compute Sij

ven if there is no environmental input into compartment j.

n 15 new pathways, yielding 18 pathways in total.1 This increase

n the number of effective pathways also increases the accuracy of
ur computation of S. We  name this new set contracted pathways.

1 As a rule, a pathway with n compartments generate n many contracted path-
ays. The three pathways in Fig. 3 contain 18 compartments in total, and therefore,

enerate 18 contracted pathways.
and Predators respectively. The simulation output includes pathway, flow time and
rticles starting from their entrance into the ecosystem, until they return to the

eral, such a simulation takes less than 5 s on a typical desktop computer (equipped

We  carry out the same computation of S as we did in Eq. (4)
on contracted pathways. Since any compartment receives an envi-
ronmental input or an inter-compartmental input, it is possible to
compute the full S matrix for any ecosystem model. For example,
to compute S42 using the contracted pathways, first we deter-
mine how many contracted pathways start with Deposited detritus
(compartment 2). Note that compartment 2 appears five times in
Fig. 3, therefore five contracted pathways will start with Deposited
detritus. Then we  add up the total residence time at Meiofauna
(compartment 4) for these five (contracted) pathways, and com-
pute S42 as follows:

S42 ≈ (3.6)  + (8.1) + (8.1) + (3.8 + 6.1) + (6.1)
5

= 7.16 (6)

In general, we compute S as follows:

Sij ≈ 1
|Pj|

∑
p∈Pj

Sum of residence times at comp. i for pathway p (7)
where Pj is a list of contracted pathways that start with compart-
ment j, and |Pj| represents the number of contracted pathways
in this list. The larger the value |Pj|, the more accurate the com-
putation. Since NPT is a stochastic individual-based method, each
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a)  Variation of the simulation-based S24 is shown based on 1000 simulations. With
he  exact value S24 = 34.93 computed with the conventional methodology, shown wi
o  zero with increasing pathway data, which correlates with simulation time. The r

imulation will produce a different output, which raises some ques-
ions: (1) How does the computation of S vary with respect to
ifferent simulations of the same model? (2) How much path-
ay data (|Pj|) is needed on average to obtain an accurate value

or Sij? Since NPT is based on Gillespie’s stochastic algorithm
Gillespie, 1977), the mean of different NPT simulations for the
ame model should agree with the differential equation model.
herefore, given enough pathway data, both the conventional
nd the NPT-based definitions for the storage analysis matrix S
hould agree. However, feasibility of computation could still be
n issue. In other words, how long does the NPT-based compu-
ation take to get an accurate answer? We  illustrate this issue in
ig. 5 using the oyster reef ecosystem model shown in Fig. 1 as an
xample.

To answer these questions, we simulated the oyster reef
cosystem model 1000 times, each time generating |P| = 400 ± 50
athways. Here P represents the set of all pathways. For each of
hese 1000 simulations, we computed the storage analysis matrix
. Then we repeated for |P| ≈ 4000 and |P| ≈ 40,  000 pathways. For
ach case, we created a histogram for S24 based on 1000 simula-
ions (see Fig. 5a) showing the variation of the values computed.
he choice of S24 is arbitrary, as any other entry of the S matrix dis-
lays similar behavior. The dotted vertical line in Fig. 5a shows the
xact value of S24 = 34.93. We  observe a large variation in values
omputed for |P| ≈ 400, ranging from S24 ≈ 18 to S24 ≈ 52. This is
ue to the scarce data provided by each NPT simulation. Although
he variation is large, the mean of computed values is 35.13, which
s close to the exact value of S24 = 34.93. We  observe that the vari-
tion decreases for |P| ≈ 4000 and even more so for |P| ≈ 40,  000,
here the distribution takes the shape of a sharp peak that coin-

ides with the exact value of S24 = 34.93. Because NPT is a stochastic
lgorithm, there is no exact control on the number of pathways each
imulation will produce. Therefore the numbers of pathways (|P|)
resented here are approximate figures. Similar results would be
bserved if we had compared the output for |P| = 100, 1000 and
0, 000.

Fig. 5a shows that the NPT based computation of S24 con-
erges to its exact value as larger pathway data is used. To
how that this is the case for all entries of the S matrix, we

ompute error between the conventional and the NPT-based com-
utation of S using the Frobenius norm,2 which is an entry-wise

2 Frobenius norm is a component-wise L2-norm, and is more suitable for error
nalysis in our case compared to the standard L2 (induced) matrix norm.
asing pathway data, the distribution converges to a single peak that coincides with
 vertical dotted line. (b) Frobenius norm of the difference between S and S converges
olds for three different NPT simulations.

extension of the most widely used vector norm (Euclidean norm)
to matrices:

Error = E(S, S) =
∥∥∥S − S

S

∥∥∥
F

=

√√√√∑
i

∑
j

∣∣∣∣Sij − Sij

Sij

∣∣∣∣
2

(8)

In this equation, S and S represent the NPT-based (see Eq. (7))
and conventional (see Eq. (3))  computation of the storage analysis
matrix. By definition, if this error term E(S, S) converges to zero, all
entries of S have to converge to S. To demonstrate the convergence
of S to S, we ran three NPT simulations of the oyster reef ecosystem
model to generate 106 pathways. For each simulation, we  com-
puted S using increasing number of pathways, starting from 101 up
to 106. Fig. 5b shows that for all three simulations, the error E(S, S)
converges to zero with increasing number of pathways, despite the
stochastic behavior of the NPT-based computation.

4. Dynamic storage analysis

NPT based definition of S (see Eq. (7)) depends solely on the
output of an NPT simulation. This simulation may belong to an
ecosystem at steady state, in transition to a steady state, oscillat-
ing between states, or even a chaotic ecosystem. Therefore the NPT
based S can be computed for dynamic ecosystems, unlike the con-
ventional definition (see Eq. (3)) which is only valid for steady state
systems. However, our current definition (see Eq. (7))  only allows
us to compute a constant storage matrix S that represents an “aver-
age” behavior over a time interval [0, t]. In this section, we describe
a method to compute a true dynamic storage analysis matrix func-
tion S(t), where S(a) represents the instantaneous storage analysis
matrix at time t = a.

4.1. Need for a new definition

Before constructing the NPT-based definition, perhaps we need
to clarify the meaning of “dynamic storage analysis matrix”, and
study why  it is cumbersome to extend the conventional algebraic
definition to dynamic ecosystem models. Repeating the steps in Eq.
(3) to derive S for a dynamic ecosystem, we get:

ẋ(t) = C(x) x(t) + z(t)

−C(x) x(t) = z(t) − ẋ(t) (9)
x(t) = [−C(x)−1](z(t) − ẋ(t))

Assume that we  define the dynamic storage analysis matrix as
S(t) = − C(x(t))−1, similar to the steady state definition. Note that
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(t) no longer maps boundary inputs (z(t)) to compartment stor-
ges (x(t)) because of the extra “−ẋ(t)” term. In fact, S(t) maps the
ifference between the environmental inputs and the change in
torage values (ẋ(t)), to storage values, which is hardly a practical
easure. What we need is a matrix function S(t), where Sij(t) rep-

esents the instantaneous storage contribution to compartment i
y unit boundary input at compartment j.

One issue with this definition is that all off-diagonal entries of
(t) will be zeros (Sij(t) = 0 for all i /= j), because it takes time for
ny boundary input to flow to another compartment, and then
ontribute to its storage. An instantaneous approximation to a phe-
omenon that takes a finite, non-zero amount of time to occur will
e inaccurate. An example is trying to capture a snapshot of a mov-

ng scene at night with a camera at 1/1000 s. The result will be a
ompletely dark picture, since 1/1000 s is not long enough for accu-
ate exposure in low ambient light. In fact, any steady state measure
hat depends on indirect effects (Higashi and Patten, 1986; Patten,
995), such as Finn’s cycling index (Kazanci et al., 2009; Finn, 1978)
nd throughflow analysis (Patten et al., 1976; Matamba et al., 2009),
ill have the same issue when one tries to extend their definitions

o dynamic systems using instantaneous approximations.
Another issue with this definition is the inherent assumption

hat storage occurs instantaneously. Storage depends not only on
he amount of particles that reside in a compartment, but also on
he residence time of those particles. The same amount of storage
an be created by 10 particles staying in a compartment for a day, or
40 particles staying for an hour. Therefore we revise the previous
efinition by applying the instantaneous approximation only to the
nvironmental inputs, as follows:

Let Sij([a, b]) represent the amount of storage created at com-
artment i over time ([a, ∞]), by a unit input into compartment j
ver the time interval [a, b]. Then we define the dynamic storage
nalysis matrix function S(t) as follows:

(t) = lim
h→0

S([t − h, t + h]) (10)

n this latter definition, we do not care when the storage contribu-
ion occurs. It can be at any time. However, since we are dealing
ith open systems, all particles will leave the system sooner or

ater. Therefore we can revise the definition above and use a value
 instead of ∞ ([a, M]  instead of [a, ∞]) where M is some large
nite value.

In this section, we extended the definition of a steady state
easure, storage analysis, to dynamic ecosystem models. The

ame procedure can be applied to other steady state measures
hat depend on indirect relations among compartments, such as
hroughflow analysis (Patten, 1978), Finn’s cycling index (Finn,
976) and indirect effects ratio (Higashi and Patten, 1986).

.2. Dynamic storage analysis

Utilizing this new definition for dynamic storage analysis, we

escribe the computation of S(t) based on the output of NPT sim-
lations. Similar to numerical differential equation solutions (e.g.
uler, Runge-Kutta, etc.), our computation of S(t) will be based on a
iscrete time-step value h. Smaller h values are preferred for higher

Sij(t) ≈ S([t − h, t + h]) =

∑
p∈Pj(t−h,
ccuracy. To compute an approximate value of Sij(t), we  first set a
ime interval [t − h, t + h]. Then we label those particles entering
ompartment j during this time period, and add up their storage
ontribution to i. Here is how S(t) is computed:
Fig. 6. Simplistic lake model with three compartments, modeling biomass flow.

Step 1: Simulate the model with NPT until all the particles that
move during the time window [t − h, t + h] leave the sys-
tem.

Step 2: To compute Sij(t), we  find out all contracted pathways of
the form

∗ → j → · · · → i → · · · → ∗

where the first flow “* → j” occurs during [t − h, t + h].
Step 3: To get an estimated value for Sij(t), we add up all residence

times at compartment i for each contracted pathway,
and divide this sum by the number of contracted path-
ways. This value is the average storage contribution (at
compartment i) of one unit environmental input at com-
partment j.

For example, to compute S61(1) over [0.5, 1.5] with the sample
NPT output shown in Fig. 3, we focus on the contracted pathways
of the form *→ 1 → · · · → 6 → · · · → *. Based on these three path-
ways, we get totally eighteen contracted pathways (five for particle
144, five for particle 145, eight for particle 146). Only three of these
contracted pathways start with compartment 1 (one for particle
144, one for particle 145, one for particle 146). For these three con-
tracted pathways, the first flow (* → 1) occurs at times 0.5, 1.2 and
2.3, respectively. Only the first two of these time values belong to
the interval [0.5, 1.5]. Therefore we  can only use these two spe-
cific pathways (that correspond to particles 144 and 145) for this
computation. For the first contracted pathway, particle 144 enters
compartment 1 at 0.5 (tu)  and stays in compartment 6 for 7.6 tu.
Particle 145 enters compartment 1 at 1.2 tu and does not visit com-
partment 6 at all. Therefore:

S61(1) ≈ (7.6)  + (0)
2

= 3.8 (11)

In general, we compute S as follows:

um of residence times at compartment i for pathway p)

|Pj(t − h, t + h)| (12)

where Pj(t − h, t + h) is a list of extended pathways that start with
compartment j, where the particle enters compartment j during the
time interval [t − h, t + h]. |Pj(t − h, t + h)| represents the number of
items in this list.
We  demonstrate this method using the simplistic lake model
shown in Fig. 6. The three compartment lake model consists of
three compartments: phytoplankton, zooplankton and fish. The
model accounts for the biomass flow among these compartments,
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ig. 7. (a) Time course of biomass storage, simulated using the differential equation
easonal changes. (b) The first entry of the dynamic storage analysis matrix S11(t) c

imulating the annual changes of biomass in the lake. The differen-
ial equation system is as follows:

Ṗ = 1000 + 600 sin

(
t

8.3

)
− 2.5 × 10−5PZ − 2.5 × 10−5PF − 0.15P

Ż = 2.5 × 10−5PZ − 2.5 × 10−5ZF − 0.1Z

Ḟ = 2.5 × 10−5PF + 2.5 × 10−5ZF − 0.08F

(13)

he predatory relations among the three compartments are
odeled using Lotka–Volterra type (Lotka, 1925; Volterra,

926) predator–prey equations (Berryman, 1992). Phyto-
lankton compartment gets time varying environmental input
1000 + 600 sin(t/8.3)), which represents the fluctuating availabil-
ty of nutrients and sunlight with seasonal variation. Fig. 7a shows
he time course of compartmental storage values. Successive peaks
f storage values for the three compartments are in accordance
ith their trophic level in the lake ecosystem. Fig. 7b shows one

lement of the dynamic storage analysis matrix S(t), computed
sing h = 10 tu.  We  observe that the period of oscillations in Fig. 7a
nd b coincide with each other (about 50 tu).  S11(t) represents how
uch storage is generated at compartment 1 (phytoplankton) by a

nit input into itself. Comparing Fig. 7a and b we observe a negative
orrelation between S11 and the storage value of phytoplankton.
his is because any input received by phytoplankton at its lowest
torage value is more likely to be retained longer, as its storage
alue increases over time. Similarly, at its peak storage value,
ny input phytoplankton receives is more likely to be lost as its
torage value declines. This inverse relation indicates that more
omplicated and insightful results might be observed for larger
ystems with feedback cycles.

Fig. 7 demonstrates the very first example of dynamic storage
nalysis for a non-linear ecosystem model with time dependent
oefficients in the literature. Therefore we do not have any com-
arison or verification opportunity due to the lack of alternative
ethodology. However, under certain assumptions, the conven-

ional methodology works for a rather narrow class of dynamic
odels. We  use such a model to test our results.
In Section 2, we mention that S = − C−1 in Eq. (3) is constant if

ll flows in the model are donor controlled, that is, fij = cijxj where
ij is constant for all i, j. Note that this is true for even dynamic
cosystem models. So, if we compute S(t) for a dynamic ecosystem
odel with donor controlled flows, Sij(t) should stay constant over

ime, for all i, j.

To verify our definition of S(t), we build a simplistic model, which

as the same network structure and similar storage changes over
ime as with the lake model in Figs. 6 and 7a. We  change the flow
ype to donor-controlled and keep the seasonal changing input.
 Eq. (13)) for the simplistic lake model (Fig. 6). The oscillations are indicative of the
ted for this model.

Although the flow dynamics are different, we adjusted the param-
eters of this new model so that the time course plots of two models
are very similar (Figs. 7a and 8a). Here is the differential equation
system for this model:

Ṗ = 1000 + 600 sin
(

t

8.3

)
− 0.08P − 0.01P − 0.1P

Ż = 0.08P − 0.05Z − 0.1Z

Ḟ = 0.01P + 0.05Z − 0.1F

(14)

We compute the dynamic storage analysis matrix for this new
model. As all the compartmental flows are donor controlled, we
expect to observe constant values for S(t) that do not vary over
time, despite the fact that storage values of all compartments will
be changing in a similar way to the previous model. Results agree
with our prediction. Fig. 8b shows that S11(t) stays constant over
time, indicating that no matter when the particles enter the system,
their contribution to the storage value of phytoplankton remains
the same regardless of time. While we  only provide the time course
figure for S11(t), the remaining eight entries of the S(t) matrix depict
the exact same behavior.

4.3. Verification and accuracy

We have previously discussed the accuracy of NPT based stor-
age analysis matrix computation for steady state ecosystem models
(see Fig. 5), and concluded that this new method has good conver-
gence properties, and that S can be feasibly computed with arbitrary
accuracy. This conclusion is valid for the dynamic case as well.
However, the computation of S(t) includes one more parameter (h)
which is related to the following approximation:

S(t) = lim
h→0

S(t − h, t + h) ≈ S(t − h, t + h) when h is small (15)

How small should h be chosen so that S(t) is computed accurately?
This in an important concern, especially if S(t − h, t + h) changes
rapidly as h → 0, which means that S(t) could vary greatly when
h is small, which negates the purpose of the approximation in Eq.
(15). Fortunately this is not the case, because the instantaneous
approximation to S(t) is defined as the average value of S(t) over
the interval [t − h, t + h]:

S(t) ≈ S(t − h, t + h) = 1
2h

∫ t+h

S(t) dt (16)

t−h

Therefore the error term
∣∣S(t − h, t + h) − S(t)

∣∣ is going to be
exactly zero if the change in S(t) is linear (with respect to time). In
other words, no matter how fast or steep the change in S is, as long as
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ig. 8. (a) Time course of biomass storage, simulated using the differential equatio
torage analysis S11(t) computed for this model.

t is close to linear, the approximation above will be almost exact.
11(t) presented in Figs. 7b and 8b were computed using h = 10.
ecreasing the value of h to 5 yielded no visible difference in S(t).

Accuracy will be of concern only if (d2S(t))/(dt2) is significantly
arge. This only happens for extremely sudden changes, and are
ather rare for ecosystems. Even in such cases, choosing smaller h
alues guarantees accurate results. If a specific model is prone to
udden changes, then an adaptive algorithm can be devised that can
hoose the appropriate h value automatically, based on the same
dea used for adaptive ODE solvers such as Runge-Kutta-Fehlberg
Hull et al., 1972).

. Conclusion and future work

In this paper, we present a novel simulation based approach to
ompute storage analysis for compartmental models. The simula-
ions (NPT) are stochastic, whereas the conventional methodology
s deterministic. Linear algebra is used for conventional residence
ime studies, whereas we use combinatorics and intuitive counting
rguments. Despite these vast differences, both definitions of the
ame measures equal each other (see Fig. (5)), which attest to the
ccuracy and reliability of this new method.

Furthermore, the new definition in this paper is not restricted
ith the limitations of the current methodology. Change is often the

ocus of essential research problems such as environmental impacts
nd climate shifts. The same simulation-based definition applies to
ynamic systems, which greatly extends the applicability of stor-
ge analysis. Similar simulation-based definitions exist for Finn’s
ycling index (Kazanci et al., 2009), throughflow analysis (Matamba
t al., 2009), indirect effects index (Patten, 1986; Ma  and Kazanci,
012), and are being developed for other network properties. Sim-

lar to storage analysis, all these measures are only applicable to
teady state systems. The method presented in this paper can be
sed for all ecological network properties with simulation based
efinitions, to extend their applicability to dynamic models.

Previous efforts to extend the applicability of ecological net-
ork properties to dynamic models exist (Hippe, 1983; Shevtsov

t al., 2009). Hippe (1983) proposes a differential equation based
pproach, which is only applicable to donor-controlled flows.
herefore the simple system that we study in Fig. 8 cannot be used
ith this method. While the method proposed by Shevtsov et al.
2009) does not have this limitation, the methodology presented in
his paper is superior in terms of accuracy and scalability.

This method does not replace, but complement the conven-
ional methodology, which is preferable for steady state systems.
e Eq. (14)) for the simplistic lake model (Fig. 6). (b) The first entry of the dynamic

The conventional methodology is easier to use, as no simula-
tions are necessary. The results are exact values, only limited by
computational precision, whereas the simulation based method
only provides approximate values. Not everyone has quick access
to NPT simulations. Therefore we  plan to integrate simulation-
based results to EcoNet (http://eco.engr.uga.edu), a free online
software for modeling, simulation and analysis (Kazanci, 2007,
2009; Schramski et al., 2011). This integration would make this
rather computationally heavy method accessible to a wide range
of scientists and disciplines, increasing its adoption and utilization
for current and future ecosystem models.

Accuracy is another concern with this new method, as the results
contain errors due to approximations involved. However, it is pos-
sible to get arbitrarily accurate results using larger pathway data
sets. The cost, as with other numerical methods, is the computation
time. In our experience, the computation time has always been in
the order of seconds and minutes at most (on a regular desktop
computer with two  2.5 GHz cores). However, the computation time
will increase with system size and complexity, which also brings
the issue of scalability. The method fares well in this regard. We
have run a simulation for a model with 3000 compartments involv-
ing 9 × 109 particles. This unusually large model (Small et al., 2009)
was built to study the effect of consumer stoichiometric regulation
on nutrient spiraling in streams. The very fact that we  were able to
run a simulation for such a model confirms its applicability to large
and complex systems. The computing time will be less of an issue in
near future, with the current technological advances in hardware
and software.

Our future work will focus on extending this novel methodol-
ogy to other network properties (e.g. Finn’s cycling index, Indirect
effects index), as well as application to specific ecosystem models
validating its use as a practical empirically-based methodology.
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ppendix A. Intertidal oyster reef ecosystem model in
coNet format

Energy flows in an Intertidal oyster reef ecosystem model
Dame and Patten, 1981) is shown in EcoNet (Kazanci, 2007, 2009;
chramski et al., 2011) format. Flow units are in kcal/m2/day, stor-
ge units are in kcal/m2.

 ->Filter Feeders c=41.4697

ilter Feeders ->Dep Detritus c=0.0079

ilter Feeders ->Predators c=0.0003

ep Detritus ->Microbiota c=0.0082

ep Detritus ->Meiofauna c=0.0073

ep Detritus ->Dep Feeders c=0.0006

icrobiota ->Meiofauna c=0.5

icrobiota ->Dep Feeders c=0.5

eiofauna ->Dep Detritus c=0.1758

eiofauna ->Dep Feeders c=0.0274

ep Feeders ->Dep Detritus c=0.1172

ep Feeders ->Predators c=0.0106

redators ->Dep Detritus c=0.0047

ilter Feeders -> * c=0.0126

ep Detritus -> * c=0.0062

icrobiota -> * c=2.3880

eiofauna -> * c=0.1484

ep Feeders -> * c=0.0264

redators -> * c=0.0052

ilter Feeders = 2000; Dep Detritus = 1000; Microbiota = 2.4121;

eiofauna = 24.121; Dep Feeders = 16.274; Predators = 69.237

he text above can be directly entered into EcoNet web  interface
t http://eco.engr.uga.edu to generate Fig. 1 and the same results
n Table 1. More information on EcoNet and its model structure is
vailable on its website.
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