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a  b  s  t  r  a  c  t

Utility  analysis  (Patten,  1991; Fath  and  Patten,  1999)  is  quite  useful  in  quantifying  direct  and  indirect
species  relations  in  a compartmental  ecosystems  model,  regardless  of  its size  or  complexity.  It  serves
as  a  basis  for  the  formulation  of  system-wide  synergism  (Fath  and  Patten,  1998) and  mutualism  (Fath,
2007) measures.  A significant  issue  that  limits  the  applicability  of utility  analysis  is that  its mathematical
formulation  requires  the convergence  of  a matrix  power  series,  which  may  fail  for  otherwise  perfectly
valid  ecosystem  models.  For  example,  utility  analysis  for the  well  known  Neuse  river  estuary  nitrogen
flow  models  (Baird  and  Ulanowicz,  1989), collected  over  4 years  (16  seasons  total),  do  not  converge
for  some  seasons,  but converge  for others.  Interestingly,  ecologists  find  the  analysis  results  meaningful
and  useful,  even  when  the  convergence  criteria  are  not  satisfied.  This  work  investigates  the  cause  for
this  divergence,  analyzes  the  properties  of the  matrix  power  series,  and  uses  an  alternative  summability
nput–output analysis method  which  transforms  the  diverging  matrix  power  series  into  a converging  one. In particular,  we show
that  finitely  many  applications  of  the  Euler  transform  are  capable  of  forcing  convergence  on  an  otherwise
diverging  matrix  power  series  for utility  analysis.  While  the divergence  in  the  regular  sense  remains,  this
work brings  forward  a strong  mathematical  argument  that the utility  analysis,  synergism  and  mutualism
indices,  are  useful  for  all ecological  network  models,  regardless  of  their  convergence  characteristics.

©  2017  Elsevier  B.V.  All  rights  reserved.
. Introduction

Utility analysis (Patten, 1991; Fath and Patten, 1999) is an
nvaluable tool to assess the harm or benefit of a species to another,

 species to its ecosystem, and the total sum of harm and benefit
xperienced by the entire ecosystem. The latter system-wide mea-
ure is called the synergism index (Fath and Patten, 1998). Utility
nalysis applies to flow network models of conservative quantities
energy, matter), often depicted as directed graphs. These consist
f n compartments (nodes, vertices) interconnected by a set of
irected flows (directed links, edges). The compartments denote
tanding stocks (x) as storages of the energy or matter, such as the
∗ Corresponding author at: Department of Mathematics, University of Georgia,
thens, GA 30602, USA.

E-mail addresses: caner@uga.edu (C. Kazanci), mradams@uga.edu (M.R. Adams).

ttp://dx.doi.org/10.1016/j.ecolmodel.2017.04.016
304-3800/© 2017 Elsevier B.V. All rights reserved.
total biomass of a certain species living in an area. These quantities
are transferred as directed flows (Fij) between compartment pairs.

Fij : Flow rate from compartment j to compartment i

zi : Environmental input rate into compartment i

yi : Environmental output rate from compartment i

xi : Storage amount at compartment i

(1)

Natural systems are composed of thousands, or even millions,
of individuals interacting while the compartments and flows are
idealized simplifications of these interactions attempting to model
the overall fluxes of the studied quantity between different modes
of residence within the system. The network “flows” considered
in ecological models are point transfers of mass or energy between
the node storages, representing interactions such as feeding among

species. The transfer set so constructed represents a system-of-
definition, open to energy and matter exchange at the system
boundaries, incoming as inputs (z), outgoing as outputs (y). The
inputs and storages generate the flows out from a compartment,

dx.doi.org/10.1016/j.ecolmodel.2017.04.016
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolmodel.2017.04.016&domain=pdf
mailto:caner@uga.edu
mailto:mradams@uga.edu
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Table 1
Computations for utility analysis for the two  models shown in Fig. 1. The numerical
results in this table confirm the visual results presented in Fig. 1(c) and (d). The infor-
mation on the first column clearly shows that 1 + D + · · · + Dn converges to (I − D)−1

as n → ∞ for Model (a), whereas the second column shows that such convergence
is  not valid for Model (b), and we have 1 + D + D2 · · · /= (I − D)−1.

Model (a) Model (b)

D

[
0 −0.51 −0.24
1 0 −0.52
0.48 0.52 0

] [
0 −0.59 −0.09
1 0 −0.66

0.34 0.66 0

]
∑25

m=0
Dm

[
0.77 −0.39 −0.06
0.57 0.71 −0.44
0.51 0.26 0.85

] [
1.59 −1.05 −0.75
2.17 1.91 −1.11
0.10 1.47 1.44

]
∑100

m=0
Dm

[
0.67 −0.33 0.01
0.39 0.59 −0.40
0.52 0.15 0.80

] [
25.9 27.2 −6.9

−29.1 39.3 32.3
−37.5 −16.9 19.75

]
(I − D)−1

[
0.67 −0.34 0.01
0.39 0.59 −0.40
0.53 0.15 0.79

] [
0.68 −0.35 0.09
0.37 0.51 −0.41
0.48 0.22 0.76

]
[

0
] [

0
]

0 C. Kazanci, M.R. Adams / Ecol

hose sums at ith nodes are the outgoing throughflows (Tout).

Touti = yi +
n∑
j=1

Fji

T ini = zi +
n∑
j=1

Fij

he total rate of matter or energy received by a compartment
efines the incoming throughflow (Tin

i
). The difference of the

ncoming and outgoing throughflows defines the change in storage,
orming a differential equation

dxi
dt

= Tini (t) − Touti (t). (2)

f the storage values stay constant over time (dxi/dt = 0), meaning
hat the system is at steady-state, then the incoming and outgo-
ng throughflows for each compartment are equal to each other
Tin
i

= Tout
i

= Ti). One advantage of utility analysis is that it does
ot require any information about flow kinetics or dynamics. For
n ecosystem model represented as a differential equation (2), it is
elatively easy to perform perturbation simulations to measure the
ffects of a compartment on others. However, deriving an accurate
ifferential equation model of an ecosystem is no easy task, and
ometimes not even feasible. Utility analysis quantifies compart-
ental relationships using only flow rates among compartments

nd the environment at steady state.
Utility analysis is built on the direct utility matrix D (Patten,

991), defined as

ij = Fij
Ti

− Fji
Ti

(3)

tilizing the steady state assumption that total input into and total
utput from each compartment equal each other. Dij quantifies the
elative benefit (Dij > 0) or harm (Dij < 0) done by compartment j to
ompartment i, based on only the direct interactions. For instance,
f j consumes i, Fji > 0 and clearly compartment j is harmful for i,
ut the relative intensity of this harm depends on the existence of
ther consumers of i. For example, if j is the only consumer of i, then
i = Fji + yi so Dij =− Fji/(Fji + yi), is near to −1, indicating that j does a
ot of the harm to i. But if compartment i has multiple consumers,
i will be larger and the relative harm to compartment i done by
ompartment j will decrease. Hence, the ratio −Fji/Ti represents the
elative harm j does to i. Similarly, if i consumes j (Fij > 0), then j is
eneficial for i. The ratio Fij/Ti represents how beneficial j is for i,
mong all resources of i. Eq. (3) defines D as a sum of this direct
enefit and harm received by i from j, in other words, the direct
tility of j for i.

The utility analysis matrix Uij quantifies how beneficial (Uij > 0)
r harmful (Uij < 0) compartment j is for i over all possible connec-
ions, direct and indirect. Second order effects of j on i are given
y the ij entry of the squared matrix, D2. Indeed, the ij coefficient
f D2 is given by

(
D2

)
ij

=
∑

kDikDkj with DikDkj being the product

f the relative good (or harm) done by compartment j to compart-
ent k with the relative good (or harm) done by compartment k to

ompartment i. Summing over all compartments k gives the total
econd order effects of compartment j on compartment i. Similarly,
ll nth order effects are given by the elements of the nth power, Dn.
herefore U is defined as a matrix power series of the D matrix, simi-

ar to the definitions of pathway, throughflow, and storage analyses

Patten, 1978, 1985; Fath and Patten, 1999):

 := I + D︸︷︷︸
Direct

+ D2 + D3 + · · ·︸  ︷︷  ︸
Indirect

(4)
Eigenvalues of D −0.95i
+0.95i

−1.045i
+1.045i

Since (Dm)ij represents the harm and/or benefit received by i
from j over all paths of length m,  U, defined as the sum of all powers
of D, represents the relationship among all compartments, taking
into account all direct and indirect connections.

2. Occasional failure of utility analysis computations

A significant problem with the mathematical formulation of the
utility matrix (4) limits its use. A necessary condition for the infinite
sum of the powers of D to converge to a finite value is that the
elements in the infinite sum must become smaller (converge to
zero), or at least partially cancel out. In certain cases, the elements
of the matrix Dm may  alternate between increasingly high positive
and negative values as the matrix power m increases, as shown in
Fig. 1(d). For those cases the sum defining U diverges. If the infinite
sum converges, it must converge to the matrix (I − D)−1. This matrix
can be constructed regardless of the convergence of the infinite
sum (Fath, 2004). It is perhaps tempting to simply define the utility
matrix U to be (I − D)−1 but then the original motivation of summing
all higher order effects is lost.

Indeed, most software performing utility analysis, such as
EcoNet (Kazanci, 2007; Schramski et al., 2011), enaR (Borrett and
Lau, 2014) and NEA.m (Fath and Borrett, 2006), naturally use
(I − D)−1 to compute U, as it is not feasible to compute an infi-
nite sum of matrix powers. So the software may  display a utility
matrix even in the event that the sum defining utility diverges.
The equivalence (I − D)−1 =

∑∞
m=0D

m relies on an apparently frag-
ile limit operation that may  fail for some models. Unfortunately
no clear ecological reason has been provided for this failure in the
literature so far. For example, the well known Neuse river estuary
nitrogen flow models (Baird and Ulanowicz, 1989) contain 16 eco-
logical network models based on data collected for four seasons
over four years. The utility analysis matrix converges for some sea-
sons, but not for others. Nevertheless, (I − D)−1 can be computed
for all seasons, and appears to provide reasonable and meaningful
information. Yet, without the necessary convergence, we have no
clear explanation as to what the matrix (I − D)−1 represents.

To investigate the issue further, we built two similar models
with identical network structures, but with slightly different flow
values, shown in Fig. 1(a) and (b). Table 1 shows essential matri-
ces computed for these two models. The results shown in Fig. 1(c),

(d) and Table 1 clearly demonstrates that the convergence criterion
is satisfied by Model (a), but not by Model (b), despite the strong
similarity between the two  models. Current methodology limits
the application of utility analysis to Model (a), and obtained results



C. Kazanci, M.R. Adams / Ecological Modelling 358 (2017) 19–24 21

Phytoplankton

Fish

Zooplankton

4.1

2.1

2.1

1 1.1

1

1

Model (a)

Phytoplankton

Fish

Zooplankton

4.9

2.91 1.9

2.9 1

1

Model (b)

0 10 20 30 40
n

-0.2

0

0.2

0.4

0.6

0.8

1

U
(n
)

21

(c)

0 10 20 30 40
n

-3

-2

-1

0

1

2

3

4

U
(n
)

21

(d)

Fig. 1. Two similar ecosystem models are shown. Fig. (c) and (d) shows the partial sum of the powers of D (U(n) :=
∑n

m=0
Dm) for the two models, specifically n vs.  U(n)

21 .
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he  dotted horizontal line in both figures shows ((I − D)−1)21 . We  chose the entry 2
imilar  figures. Fig. (c) shows that the partial sum I + D + · · · + Dn converges to (I − D
b).  Therefore computation of utility analysis fails for Model (b), but not for Model (

(I − D)−1) are not, by present theory, valid for Model (b). Neverthe-
ess, two important observations led us to further investigate this
ssue, and utilize appropriate mathematical methods to overcome
his serious limitation:

The dashed line in Fig. 1(d) passes roughly through the mid-
dle of the diverging series, hinting at the possibility that
I + D + D2 + · · · = (I − D)−1 might still hold when alternative summa-
bility methods are utilized for this mathematically diverging but
seemingly “working” series.
The similarity observed when comparing the matrix (I − D)−1 for
the two models in Table 1 hints at the usefulness of (I − D)−1 even
when the convergence fails, as compartments of similar models
are likely to have similar utility relations, which happens to be
accurately reflected by (I − D)−1.

. Why  does the sum of D powers diverge?

The mathematical reason for this issue relates to the eigenvalues
f D (Patten, 1992). Unfortunately, eigenvalues of D do not appear
o be associated with readily available structural or physical prop-
rties of an ecosystem model. To pinpoint the cause of divergence,
e decompose the D matrix into its eigenvalues and eigenvectors

sing linear algebra, in particular, spectral theory (Beezer, 2015).
nfortunately, there’s little information on the ecological signifi-
ance, interpretation, or the meaning of the individual components
hat appear during this analysis. Actually, most of the scalar and

atrix values we utilize are not even real, but complex values with
on-zero imaginary components. Therefore we primarily focus on
he mathematics in order to understand, and then eliminate the
onvergence issue for the remaining of this manuscript, with lit-

le attention given to the ecological significance of the variables or
uantities defined during this process.

First, we show that the infinite sum of the powers of the D matrix
4) is equal to (I − D)−1, only if the largest magnitude of all the
trarily, since it would be redundant to show the entire matrix, requiring nine very
 n → ∞ for Model (a), whereas Fig. (d) shows that this convergence fails for Model
spite their similarities.

eigenvalues of D is less than 1. We  show that D is diagonalizable
(Appendix, Corollary 7) for any compartment model representing
substance storage and flow, enabling the following representation
(Beezer, 2015):

D = P�P−1, � =

⎡
⎢⎢⎣
�1

. . .

�n

⎤
⎥⎥⎦

Here, � is a diagonal matrix of eigenvalues of D, and P is an invert-
ible matrix. Then

Dm =
(

P�P−1
)m = P�mP−1, �m =

⎡
⎢⎢⎣

�m1

. . .

�mn

⎤
⎥⎥⎦

We observe that the size of the elements of Dm is directly related
to the size of the elements of �m, as P and P−1 are constant matrices
(independent of m).  In other words, if powers of the eigenvalues of
D take large values, so will D, and vice versa. The utility analysis
matrix U is defined as:

U :=
∞∑
m=0

Dm = P

( ∞∑
m=0

�m

)
P−1 = P

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
m=0

�m1

. . .
∞∑
�mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
P−1
m=0
(5)

The convergence of the sum (
∑∞

m=0D
m) of powers of D entirely

depends on the convergence of the sum of powers of its eigenvalues
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While the original series diverges, it is Euler summable, and its Euler
sum can be computed using the same formula used for converging
series (8), which is not valid for

∥∥�∥∥> 1.

1 − 2 + 22 − 23 + · · · ?= 1
1 − (−2)

= 1
3

2 C. Kazanci, M.R. Adams / Ecol∑∞
m=0�

m
k

for all k = 1, . . .,  n.) In general, for any complex value �,
e have

 + � + �2 + · · · = lim
m→∞

1 − �m+1

1 − �
=

⎧⎨
⎩

1
1 − �

if
∥∥�∥∥< 1

Does not exist if
∥∥�∥∥ ≥ 1

Continuing from Eq. (5), we have that

P

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
m=1

�m1

. . .
∞∑
m=1

�mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
P−1 = P

⎡
⎢⎢⎢⎢⎢⎣

1
1 − �1

. . .
1

1 − �n

⎤
⎥⎥⎥⎥⎥⎦P−1

= P(I − �)−1P−1

= (I − D)−1

ssuming all eigenvalues of D have magnitude less than one (Patten,
991; Lobanova et al., 2009). In other words,

U =
∞∑
m=0

Dm converges to(I  − D)−1 if and only if
∥∥�k∥∥< 1

for all k = 1, . . .,  n.

able 1 shows the eigenvalues of Model (a) and Model (b), illustrat-
ng this general result.

. Eliminating divergence using the Euler transform

What if the magnitude of an eigenvalue of D exceeds one? Then
he sum I + D + D2 +· · · defining U does not converge. As a solution
o this problem, we consider an alternative summability method,
amely the Euler summation (Hardy, 2000), which provides an
lternative method for computing the sum I + D + D2 +· · · even when
he magnitude of an eigenvalue of D exceeds one. The Euler trans-
orm of a given series

∞

n=0

an (6)

s defined as

∞

n=0

An
2n+1

An =
n∑
k=0

(
n

k

)
ak. (7)

The Euler transform conserves the sum of the series. In other
ords, if the series (6) converges, then so does its Euler trans-

orm (7), and to the same sum. On the other hand, it is possible
or the Euler transform to converge even when the original series
iverges. If the series (7) converges, then the series (6) is called
uler summable. Applying the Euler transform to
∞

n=0

�n = 1 + � + �2 + · · · = 1
1 − �

if
∥∥�∥∥< 1 (8)
Modelling 358 (2017) 19–24

we get

∞∑
n=0

(
n
k

)
�k

2n+1
= 1

2
+ 1 + �

4
+ 1 + 2� + �2

8
+ 1 + 3� + 3�2 + �3

16
+ ...

= 1
2

+ 1 + �

4
+ (1 + �)2

8
+ (1 + �)3

16
+ ...

= 1
2

[
1 + 1 + �

2
+ (

1 + �

2
)

2

+ (
1 + �

2
)

3

+ ...

]

= 1
2

[
1

1 − 1 + �

2

]
assuming || 1 + �

2
|| < 1

= 1
2

· 2
2 − (1 + �)

= 1
1 − �

(9)

Here, the convergence criterion of the transformed series (9) is∥∥(1 + �/2)
∥∥< 1 whereas the convergence criterion of the origi-

nal series (8) is
∥∥�∥∥< 1. Does this help in our case? The ultimate

answer is yes, but further work is required to say yes in confidence.
Here’s a typical application of the Euler transform:

Original series (� = − 1
2

) 1 − 1
2

+ 1
4

− 1
8

+ 1
16

− 1
32

+· · · =
∞∑
n=0

(
−1
2

)
n

= 2
3

Euler transform (
1 + �

2
= 1

4
)

1
2

+ 1
8

+ 1
32

+ 1
128

+ 1
512

+· · · = 1
2

∞∑
n=0

(
1
4

)
n

= 2
3

Here, both the original series and its Euler transform converge.
However, we  observe that the convergence of the transform series
is much faster, as the individual elements in this series converge
to zero much faster than the original series. For

∥∥�∥∥> 1, the orig-
inal series will diverge, but its Euler transform may  converge. For
example:

Original series (� = −2) 1 − 2 + 4 − 8 + 16 − 32 + · · ·

=
∞∑
n=0

(−2)n diverges

Euler transform
(

1 + �

2
= − 1

2

)
1
2

− 1
4

+ 1
8

− 1
16

+ 1
32

+· · · = 1
2

∞∑
n=0

(
− 1

2

)n
= 1

3

Sometimes a single Euler transformation may  not be enough for
convergence, but successive applications are required. For exam-
ple:
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 104 − 105 + · · · =
∞∑
n=0

(−10)n diverges

+ · · ·)  = 1
2

∞∑
n=0

(− 9
2

)
n

diverges

+ · · ·)  = 1
4

∞∑
n=0

(− 7
4

)
n

diverges

+ · · ·)  = 1
8

∞∑
n=0

(− 3
8

)
n

= 1
11
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Fig. 2. Figure shows how successive application of Euler transform enlarges the
disk of convergence for the series 1 + � + �2 +· · · where � is a complex number. The
unit disk satisfies Eq. (10), while the larger disk satisfies Eq. (11),  and the largest
one satisfies (12). With successive applications of the Euler transform, the disk of
convergence will enlarge to cover any value � if it’s real part does not exceed one.
C. Kazanci, M.R. Adams / Ecol

Original series (� = −10) 1 − 10 + 100 − 1000 +

First Euler transform (
1 − 10

2
= − 9

2
)

1
2

(1 − 9
2

+ (
9
2

)
2

− (
9
2

)
3

Second Euler transform (
1 − 9/2

2
= − 7

4
)

1
4

(1 − 7
4

+ (
7
4

)
2

− (
7
4

)
3

Third Euler transform (
1 − 7/4

2
= − 3

8
)

1
8

(1 − 3
8

+ (
3
8

)
2

− (
3
8

)
3

t this point, we should emphasize that the Euler transformation
s not a magic formula that will force any diverging series into a
onverging sum with enough successive applications. Consider the
ollowing example, which has significantly smaller terms than the
revious Euler summable series above.

Original series 1 + 2 + 4 + 8 + 16 + 32 + · · · =
∞∑
n=0

2n diverges

Euler transform
1
2

(
1 + 3

2
+
(

3
2

)2

+
(

3
2

)3

+ · · ·
)

= 1
2

∞∑
n=0

(
3
2

)n

diverges

This diverging series is not Euler summable. In fact, this series
annot be made to converge with any number of iterations of the
uler transform. Note that all diverging series presented previously
ad the property that � ≤ −1. Convergence is already guaranteed

or −1 < � < 1. However, a series is not Euler summable if � > 1. In a
ense, the Euler transformation will help provide an “average” value
or the alternating series, as shown in Fig. 1(d), which fits perfectly
or our purpose. Yet, it is ineffective for diverging non-alternating
eries, where all terms in the series have the same sign, indicating
ivergence to either +∞ or −∞.

Now we return to the convergence question for the power series
efining utility. As we  have seen, the convergence of (4) is deter-
ined by the convergence of the geometric sum of the eigenvalues,

i. In our case, the eigenvalues are complex numbers. The crite-
ion for Euler summability for sums of powers of complex numbers
s that the real part of � should be less than one. In other words,

 + � + �2 +· · · is Euler summable if Re(�) < 1. This criterion becomes
lear visualizing the disk of convergences for any complex number

 = x + iy shown in Fig. 2. The disk of convergence is a set of values
or which a series converges, which often forms a circular region.

riginal series
∥∥�∥∥< 1 ⇔ x2 + y2 < 1 (10)

irst Euler transform
∥∥∥1 + �

2

∥∥∥< 1 ⇔ (x + 1)2 + y2 < 4 (11)

econd Euler transform

∥∥∥∥∥1 +
(

1+�
2

)
2

∥∥∥∥∥< 1 ⇔ (x + 3) + y2 < 16(12)

n the appendix, we show that eigenvalues of D are purely imagi-
ary or zero (Corollary 6) for any network model. In other words,
he real parts of the eigenvalues of D are always zero, satisfying
he condition Re(�) = 0 <1 for Euler summability (Fig. 2). This final-
zes our proof that U : = I + D + D2 +· · · is always Euler summable to
I − D)−1, for any compartment model, regardless of the values of
he eigenvalues of D.

. Conclusion
A major roadblock to the application of utility analysis for com-
lex systems models has been the verification of the convergence
f the infinite series that defines the utility matrix. In a striking
In  other words, Euler summability is guaranteed for � provided that Re(�) < 1 and
impossible to achieve if Re(�) ≥ 1. Since all eigenvalues of D have zero real parts
(Corollary 6), Euler summability of the D matrix power series is guaranteed.

example of this, Li et al. (2012) treats the city of Beijing as a giant
ecosystem, and uses utility analysis to study the relations between
the city’s main processes such as agriculture, mining, recycling,
domestic consumption, processing and manufacturing and con-
struction. The author states “However, the D matrix power series
does not always converge, and it is necessary to confirm that the
D matrix converges before applying utility analysis.” The data set
used for their model clearly required a great deal of time and effort
to compile. Yet, their manuscript would not be possible if the con-
vergence condition failed

Utility analysis can be viewed as a function f that produces a
matrix representing compartment relations based on a systems
model.

f (F, y, z) = U, f : ecosystem model �−→ species relations

If this function fails on some ecosystem models when there’s
nothing seemingly wrong with the model itself, then a modeler’s
approach should be to ask if the formulation is too restrictive. To
be sure, the field scientists’ observations and intuition supersede
the insights gained by any mathematical or computational model,
as any abstraction of a living system is no longer that living system,

but a mathematical or computational construct that may play by its
own rules. During a discussion of this convergence issue, Bernard
Patten shared his experience that even for ecosystem models where
the convergence criterion was  not satisfied, (I − D)−1 appeared to
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rovide reasonably correct information. This conversation led us
o investigate the original definition of utility analysis further, as
pposed to searching for an alternative or a revision.

Despite its rather technical character, the application of this
ork is transparent in use, as it does not develop a new
ethodology or construct, but removes an existing obstacle in

urrent methodology. It is a significant achievement in enabling
idespread adoption of utility analysis for ecosystem models, as it

liminates the strict requirement that norms of all eigenvalues of
 should be less than one.
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ppendix A. D is diagonalizable, and its eigenvalues are
urely imaginary or zero

The proof follows from the fact that D is always skew-
ymmetrizable, and such matrices have purely imaginary eigenval-
es. We  provide a detailed proof requiring only basic linear algebra
nowledge (Beezer, 2015).

efinition 1. A real matrix A is called skew-symmetric (or anti-
ymmetric) if Aij =− Aji for all i, j, or, in other words, A =− AT.

heorem 2. Eigenvalues of skew-symmetric matrices are purely
maginary.

roof. Let � be an eigenvalue of a skew-symmetric matrix A with
he associated eigenvector v.

v = �v ⇒ v̄
T
Av = v̄

T
�v = �‖v‖2

ere, v̄ represents the complex conjugate of v, and below such
onjugates generally. Similarly

v̄
T
Av = (AT v̄)

T
v = (−Av̄)

T
v = (−Āv)

T

v = −(�v̄)
T
v

= −v̄
T
�̄v = −�̄‖v‖2

ince v is an eigenvector, ‖v‖ /= 0, so we get

 = −�̄
hich implies that real part of � is zero. Therefore � is either purely

maginary or zero. �

efinition 3. Two matrices A and B are called similar if there exists
n invertible matrix P such that A = P−1BP.

heorem 4. D is always similar to a skew-symmetric matrix.

roof. We  can define D using matrix definition⎡
T1

⎤

 = T

−1(F − FT ) where T =
⎢⎢⎣ . . .

Tn

⎥⎥⎦
Modelling 358 (2017) 19–24

where R is defined as a diagonal throughflow matrix. Then

D = T
−1(F − FT ) = T

−1/2
(
T

−1/2(F − FT )T−1/2
)︸  ︷︷  ︸

=H

T
1/2

This shows that D is similar to a skew-symmetric matrix if H =
T

−1/2(F − FT )T−1/2 is a skew-symmetric matrix:

HT = (T−1/2(F − FT )T−1/2)
T = T

−1/2(FT − F)T−1/2

= −(T−1/2(F − FT )T) = −H
�

Theorem 5. Similar matrices have the same eigenvalues.

Proof. Let A and B similar matrices, and let � be an eigenvalue of
A.

Av = �v
P−1BPv = �v

B(Pv) = �(Pv)

Then � is an eigenvalue of B as well, with eigenvector Pv.  �

Corollary 6. Combining the results of all theorems shows that the
eigenvalues of D are either zero or purely imaginary. In other words,
the real parts of the eigenvalues of D are always zero.

Corollary 7. D is always diagonalizable.

Proof. We  showed that D is similar to a skew-symmetric matrix.
Real skew-symmetric matrices are normal matrices (ATA = AAT) and
are thus subject to the spectral theorem (Beezer, 2015), which
states that they can be diagonalized by a unitary matrix. �
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