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A B S T R A C T

In ecological and other transactional energy–matter flow networks, accurate quantification of flows between
compartments can be difficult and costly. For models at steady state or undergoing linear change, energy–
matter conservation together with the steady-state condition can be exploited to estimate unknown flows
from known ones. In compartmental network models, some flows are more important than others in terms of
their connections to other flows, participation in cycles, geodesic distance to the environment (in the graph
theoretical sense), and other topological features. In respect to estimating unknown flows, such importance
differences also come into play. Pursuing this, we formulate a Link Importance iNdeX (LINX) that quantifies
each flow’s importance in a model. This index identifies and quantifies the redundancy imposed by network
topology and mathematical conservation rules. We anticipate that it will find use in minimizing the cost and
effort of data collection while also increasing model accuracy.
Software availability

Software name: LINX
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1. Introduction

In recent decades of ecological and other applied complex-systems
modeling, numerous methods have been developed to quantify flow
networks representing qualitative food webs. A typical approach to
determining flows begins with a literature search for observational or
experimental studies providing data for computation or estimation of
model flows. References such as Jørgensen et al. (1991) that provide an
annotated compendium of process rates with references may be quite
useful. If the literature does not provide adequately reliable data, the
next step often entails gathering empirical data at the model field site.

∗ Corresponding author at: Department of Mathematics, University of Georgia, Athens, GA 30602, USA.

In the food-web field, methods such as gut content analysis, stable
isotope analysis (Pacella et al., 2013; Phillips and Gregg, 2003; Post,
2002), and fatty acid composition (Iverson et al., 2004) have been used
to quantify dietary composition for use in network flow quantification.

Given the difficulty and high cost of gathering empirical data (Yo-
dzis and Innes, 1992), methods based on inference and computation
have been described. One such approach uses allometric principles
derived from empirical observation of organism physiology and bio-
chemical rate processes to calculate hypothetical flows in steady-state
networks (Barnes et al., 2014). This method has deep roots in ecol-
ogy and finds its greatest recent development in what has become
known as metabolic theory in ecology (Brown et al., 2004; Sibly
et al., 2012). Some network quantification procedures are based on
community assembly rules, in which algorithms are used to build net-
work structure and determine flows (Fath et al., 2007); these methods
include a modified niche model (Halnes et al., 2007) and a structured
food-web approach with network flows drawn from a probability dis-
tribution (Morris et al., 2005). Ulanowicz and Scharler (2008) describe
two network quantification methods (joint apportionment and reverse
mold-filling) that require minimal mathematical inference and avoid
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the complexities of optimization routines. Ecopath with Ecosim (Chris-
tensen and Walters, 2004) uses some of these methods to help construct
and quantify a network of species interactions.

Finally, as flows (or ranges thereof) are determined, the model must
be checked for consistency since conservation laws provide constraints
which the measured flows may not satisfy. Specifically, the difference
between the total input into and output from each compartment should
be within expected range of values. For smaller systems this might be
done by hand, using expert knowledge of the system, but mathematical
optimization schemes, such as linear inverse modeling (LIM), intro-
duced into ecology by Vézina and Platt (1988), have been developed
considerably and applied in many ecological contexts (Breed et al.,
2004; Saint-Béat et al., 2018; Marquis et al., 2007; Vézina and Pace,
1994; van Oevelen et al., 2010; Savenkoff et al., 2001).

Despite the existence of extensive literature focusing on computa-
tional methods that help quantify flows in network models, there is as
yet no methodology to help guide and optimize the process of gath-
ering empirical data. Approaches like LIM and balancing methods are
helpful after empirical data collection, but are not designed to interact
with the collection process itself. The same ecological principles and
computational ideas that make such computational methods possible
can be exploited to help optimize empirical data collection to lower
the cost and effort, as well as to increase accuracy.

The methodology developed herein originated out of the obser-
vation that for steady-state network flow models, certain quantified
flows may provide more or less information about other unquantified
flows. The difference is determined solely by the location of a flow
within the network structure. Given a list of compartments (nodes,
vertices) and connections (links, flows), the method works by assigning
importance values to each connection. The higher the importance
value, the more the information gained by the quantification of that
flow. Our method could be used in the context of any of the network
flow quantification approaches described above where incomplete flow
quantification leads to the question—which set of remaining unquan-
tified flows should become focal for further empirical or analytical
quantification?

Furthermore, it is noteworthy that certain flow magnitudes may
provide information that results in a more stable calculation of the
remaining, unquantified flows as well (see Section 6). That is to say,
a small error in one measurement may propagate in different ways
compared to the measurement of another flow in its place. One of
the goals of our method is to determine which flows result in a lower
potential variance of the calculations of the remaining flows in the
presence of measurement errors. Applying our method in this way
could improve the efficiency of model-making and aid in deploying
research efforts in the construction of ecosystem flow networks.

Mathematical formulation of the Link Importance iNdeX (LINX) of
this paper involves linear algebra. However, the general idea moti-
vating it can be described verbally, as is done in Section 2 using
a three compartment food-chain model. A slightly more complicated
model is needed to show the relevance and usefulness of a LINX, and
understand how it works. We use a simple model with three compart-
ments and five flows to do this in Section 4, after covering necessary
assumptions and notations in Section 3. A general LINX formulation is
derived in Section 5, and refined and finalized in Section 6. Section 7
includes a demonstration using the oyster reef ecosystem model (Dame
and Patten, 1981), with emphasis on practical considerations such as
data availability. Computational feasibility is discussed in Section 8,
followed by the conclusion (Section 9).

2. Flow importance index: The idea

In a network model at steady-state, not every flow needs to be
quantified empirically, because the steady-state assumption introduces
constraints. In Fig. 1, for example, determining any one of the four
flows is sufficient to quantify the remaining three flows because the
2

e

Fig. 1. A three compartment food chain.

steady-state condition forces all the flows to be equal. Their importance
values are also equal because the amount of information each provides
about the others is identical.

Because each flow determines all the others, a chain model is
too simple to fully motivate a generalized importance-index concept.
The example in Section 4 will demonstrate, using a more complicated
network, how some flow values can be more useful than others in
determining unknown values. In that section we will introduce the link
importance index, LINX, that will quantify the usefulness of each of the
flows. Flows with higher LINX values will give more restrictions on the
whole system than those with lower indices. We preferred ‘‘link im-
portance index’’ to ‘‘flow importance index’’ because the mathematical
formulation of LINX is independent of the flow values. It is based purely
on network topology, the structure and organization of connections, or
links among compartments.

LINX does not only help identify the most helpful flows to build a
complete model, but also provides information about model accuracy.
In theory, determining all four flow values in the model shown in Fig. 1
would be totally unnecessary and redundant, as the values must all
be equal. In broader practice, however, depending on the amount of
error involved in determining an individual flow, averaging the four
measured flow values in this example should increase accuracy because
it effectively quadruples the sample size. In general, a higher LINX
value will imply that accurate measurement of that flow will contribute
significantly more to the overall model accuracy than a flow with lower
LINX value. In situations where restrictions on cost and effort limit the
utilization of highly accurate measurement methods for the entire flow
data, the guidance provided by the flow importance index can be quite
useful.

The source of the extra information provided by the measurement of
certain flows is due to the steady-state assumption that the total amount
of input received by a compartment equals its total output per unit
time. In fact, LINX is still applicable to certain models not at steady-
state. Appropriate mathematical representation of a flow network is
necessary to formulate the effect of the steady-state assumption, and
how it can be relaxed in LINX usage, as next discussed.

3. Notation and the steady-state assumption

It is common to represent quantified flows in steady-state multi-
compartment models by matrices. The representation of the flow ori-
entation differs in literature. For instance, Patten (1978) employs a
columns(j)-to-rows(i) flow orientation, 𝑓𝑗𝑖, to represent the flow from
compartment 𝑖 to 𝑗. Ulanowicz (1986) represents the same flow using
a rows(i)-to-columns(j) flow orientation, 𝑇𝑖𝑗 . Since the environment
s not represented as a compartment in standard network analyses
e.g. Patten and Ulanowicz), environmental inputs into or outputs from
ompartments are not included in the flow matrix, but are represented
eparately by vectors. The environmental input into and output from
ompartment 𝑖 are denoted by 𝑧𝑖 and 𝑦𝑖, respectively, by Patten (1978).
lanowicz (1986) denotes environmental inputs as 𝐷𝑖, and distin-
uishes two categories of environmental outputs, usable (export, 𝐸𝑖)
nd unusable (respiration, 𝑅𝑖).

The mathematical representation of the steady-state assumption is
ignificantly simpler when all flows, including the environmental inputs
nd outputs, are enumerated and represented in vector form instead.
or that reason, Vézina and Platt (1988) forego the use of matrices
ntirely, and instead use a vector 𝑟, where 𝑟 represents the 𝑖th flow. We
𝑖
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adopt this convention for present purposes, however we use a different
letter, 𝑓𝑖, in keeping with the notation of Patten.

The information imposed by the steady-state assumption on a food
hain (𝑓𝑖 = 𝑓𝑗 for all 𝑖, 𝑗) is quite simple, which is not necessarily
he case for a general ecosystem model. In order to accurately identify
he information imposed by the steady-state assumption on a general
cosystem model, we need a formal way to represent how flows and
ompartments are connected to each other for a given ecosystem model.
n graph theory, the incidence matrix is used for this purpose. Since
pen ecosystem models are not really graphs,1 we use a general-
zed version of the incidence matrix, called the stoichiometric matrix,
hich is the same as the incidence matrix for closed systems with no
nvironmental inputs or outputs.

The stoichiometric matrix 𝑆 (Eq. (1)), along with flow vector 𝑓 ,
provides the simplest mathematical representation of the conserva-
tion laws (Eq. (3)). For a model with 𝑛 compartments and 𝑘 flows
including the environmental inputs and outputs), the stoichiometric
atrix (Resendis-Antonio, 2013) has 𝑛 rows and 𝑘 columns, and is
efined as follows:

𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1 if flow 𝑓𝑗 is to compartment 𝑖,
−1 if flow 𝑓𝑗 is from compartment 𝑖,
0 neither.

(1)

or example, the stoichiometric matrix of the three compartment food
hain in Fig. 1 is

=
⎡

⎢

⎢

⎣

1 −1 0 0
0 1 −1 0
0 0 1 −1

⎤

⎥

⎥

⎦

, 𝑓 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓1
𝑓2
𝑓3
𝑓4

⎤

⎥

⎥

⎥

⎥

⎦

, (2)

here flows and compartments are ordered as {𝑓1, 𝑓2, 𝑓3, 𝑓4} and
𝐴, 𝐵, 𝐶}, respectively. The vector 𝑓 contains flow magnitudes, or-
ered in the same way as the columns of the stoichiometric matrix. For
xample, the second column of 𝑆 contains −1 on its first row and +1 on
ts second row, representing the flow from the first compartment (A) to
he second (B). In other words, when a unit flow occurs from 𝐴 to 𝐵,
here will be a unit decrease in 𝐴, a unit increase in 𝐵, and no change
n 𝐶. Thus, the second column of 𝑆, [−1, 1, 0] corresponds to the second
low 𝑓2. The fact that a model is at steady-state can be represented in
erms of the matrix 𝑆 and the vector 𝑓 as

𝑓 = 0. (3)

or example, for the three-compartment food chain in Fig. 1, this simple
quation yields the correct steady-state conditions as follows:

𝑓 = 0 ⟺

𝑓1 − 𝑓2 = 0
𝑓2 − 𝑓3 = 0
𝑓3 − 𝑓4 = 0

⟺ 𝑓1 = 𝑓2 = 𝑓3 = 𝑓4.

n general, for an 𝑛-compartment model, the steady-state assumption
rovides 𝑛 linear equations involving flow values that can be exploited
o determine unknown flows without needing to quantify all of them.

While the steady-state assumption is essential for the method to
ork, it is not absolutely needed. The same approach still works if the

hange in compartment storage values can be assumed to occur at a
onstant rate. For example, if a certain compartment gains (or loses)
pproximately a certain amount of storage per unit time over a time

1 For open ecosystem models, each environmental input and output is
onnected to a single compartment, as the environment is not included within
he boundaries of the model. For a graph however, each flow (edge) needs to
e attached to exactly two compartments (vertices), by definition. Hypergraphs

do not have this restriction. Also called set systems (Hell and Nesetřil, 1970),
they are significantly more general mathematical constructs than graphs, and
therefore not the most suitable abstraction for the ecosystem models we focus
3

on.
period, then all the methods presented in this paper remain applicable
during that time period. In general, if the rate of change of the storage
value of compartment 𝑖 is given as 𝑐𝑖, then 𝑆 and 𝑓 satisfy the following
equation instead of Eq. (3).

𝑆𝑓 =
⎡

⎢

⎢

⎣

𝑐1
⋮
𝑐𝑛

⎤

⎥

⎥

⎦

This does not apply to systems where storage values fluctuate signifi-
cantly, which can be characterized by the high values of the magnitudes
of the second derivative of the storage values, over the observed time
period. We will continue to use the phrase ‘‘steady-state assumption’’
throughout this manuscript for simplicity and clarity. Nevertheless,
the entire content of this manuscript remains valid for models where
changes in storage values can be assumed to occur at constant rates.

4. Flow importance index: A simple example

The three compartment food chain model (Fig. 1) is too simple
an example to demonstrate how a link importance index is to be
formulated in general. Material covered in Section 3 enables us to
demonstrate how the flow importance measure is computed for the
simple three compartment model shown in Fig. 2. Unlike the previous
example, no single flow value is enough to determine all five flows in
this model. We need to find the minimum number of flows that need
to be quantified in order to compute all flows in this system. For this,
consider the steady-state equations for each compartment:

𝐴 ∶ 𝑓1 = 𝑓2 + 𝑓3

𝐵 ∶ 𝑓2 + 𝑓4 = 𝑓5 (4)
𝐶 ∶ 𝑓3 = 𝑓4

This linear system has five variables (degrees of freedom) and three
equations (restrictions), leaving two degrees of freedom. This means
if we fix two of the flows, the remaining three should be uniquely
determined. That is, quantifying only two flows will usually suffice to
determine all five flows of this model. To do this explicitly, we rewrite
the steady-state equations (4) using the stoichiometric matrix, as shown
in Eq. (3).

⎡

⎢

⎢

⎣

1 −1 −1 0 0
0 1 0 1 −1
0 0 1 −1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

(5)

To demonstrate, we can randomly choose two of the five flows, and
compute the remaining three based on the two we chose. As an exam-
ple, we choose 𝑓4 and 𝑓5, and compute 𝑓1, 𝑓2 and 𝑓3 in terms of 𝑓4 and
𝑓5. To do this, we need a system of equations that expresses 𝑓1, 𝑓2 and
𝑓3 in terms of 𝑓4 and 𝑓5. This follows from Eq. (5):

⎡

⎢

⎢

⎣

1 −1 −1
0 1 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑓1
𝑓2
𝑓3

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

0 0
1 −1

−1 0

⎤

⎥

⎥

⎦

[

𝑓4
𝑓5

]

Here, the 3 × 3 matrix on the left is made from the first three columns
of the stoichiometric matrix (4) that correspond to the unknown flows
𝑓1, 𝑓2 and 𝑓3, and the 3 × 2 matrix on the right is formed from the
remaining columns of 𝑆 that correspond to 𝑓4 and 𝑓5. Then, assuming
the 3 × 3 matrix on the left is invertible, we get the equations we need
to compute 𝑓1, 𝑓2 and 𝑓3, demonstrating that quantifying 𝑓4 and 𝑓5 is
sufficient to determine all flow-rates:

⎡

⎢

⎢

⎣

𝑓1
𝑓2
𝑓3

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

1 −1 −1
0 1 0
0 0 1

⎤

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎣

0 0
1 −1

−1 0

⎤

⎥

⎥

⎦

[

𝑓4
𝑓5

]

=
⎡

⎢

⎢

⎣

𝑓5
−𝑓4 + 𝑓5

𝑓4

⎤

⎥

⎥

⎦

(6)

This exercise informs us about the necessary and sufficient condition

that the matrix formed by the columns of 𝑆 that correspond to the
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Fig. 2. A three compartment ecosystem model with five flows.

unknown flows should be invertible. If this matrix were not invertible,
it would be impossible to derive the equations we need, implying that
it would be impossible to uniquely compute 𝑓1, 𝑓2 and 𝑓3 using 𝑓4 and
𝑓5. To demonstrate such a case, if we try to find 𝑓2, 𝑓3 and 𝑓4 in terms
of 𝑓1 and 𝑓5, we get

⎡

⎢

⎢

⎣

−1 −1 0
1 0 1
0 1 −1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑓2
𝑓3
𝑓4

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

1 0
0 −1
0 0

⎤

⎥

⎥

⎦

[

𝑓1
𝑓5

]

. (7)

In this, the 3 × 3 matrix on the left is not invertible, meaning that
knowing 𝑓1 and 𝑓5 is not sufficient to determine 𝑓2, 𝑓3 and 𝑓4. The
intuitive reason for this is that measuring both 𝑓1 and 𝑓5 is redundant,
as the steady-state assumption implies that 𝑓1 = 𝑓5. Similarly, 𝑓3 = 𝑓4.
Any other choice of two flows however, can be used to determine all
five flows in the model.

The goal of LINX is to rank the amount of information on other
flow values gained by quantifying a specific flow. The extra information
is afforded by the steady-state assumption, and the amount of this
information depends on the location of the compartment within the
network and the entire network topology. As an example, for the simple
food-chain model of Fig. 1, measuring any one of the four flows does
provide the values of the three remaining flows as well, effectively
quadrupling the information provided by a single measurement. This
unusually high gain is due to the steady-state condition combined with
the fact that each compartment has exactly one input and one output,
forcing all flows to be equal to each other. LINX indicates that for this
model, quantifying any one of the flows provides the same amount of
information.

Assessing the contribution of a single flow for the three compart-
ment model in Fig. 2 is more complicated, as at minimum two flows are
needed to compute all five flows. Only if we quantify a flow in question
and another flow will it then be possible to compute all other flows,
given that the matrix formed by the columns of the stoichiometric
matrix corresponding to the remaining three flows is invertible (6). If
that matrix is not invertible (7), then those two flows alone will not be
enough to determine all flows in the system. Based on this observation,
we define LINX as the proportion of the cases that makes it possible to
compute all five flows, when a flow in question is paired with another
flow. This statement is generalized (8), formulated (10), and improved
(13) in the following sections.

As an example, we compute the flow importance index of 𝑓3. There
are four different sets of two flows that contain 𝑓3 and one other flow:
{𝑓1, 𝑓3}, {𝑓2, 𝑓3}, {𝑓3, 𝑓4}, {𝑓3, 𝑓5}. Considering the invertibility of the
resulting matrices formed by each of these sets (Eqs. (6) and (7)), we
see that all five flows in the model can be computed by measuring the
flows in any of these sets, except for {𝑓3, 𝑓4}. In other words, out of
the four flow sets that have the potential to compute all five flows,
only three of them can be used to do so. Therefore, we define the flow
importance index of 𝑓3 as 3∕4. We can compute the importance indices
of all flows by first making a list of all sets containing two different
flows:
{𝑓1, 𝑓2}, {𝑓1, 𝑓3}, {𝑓1, 𝑓4},���{𝑓1, 𝑓5}, {𝑓2, 𝑓3}, {𝑓2, 𝑓4}, {𝑓2, 𝑓5},���{𝑓3, 𝑓4},
4

{𝑓3, 𝑓5}, {𝑓4, 𝑓5}.
The two cross-outs contain redundant flows. One can use the two flows
n any of the eight remaining sets to compute all five flows.

We define the link importance index (LINX), 𝑚(𝑓𝑖), as the fraction of
ets with two elements including 𝑓𝑖 that can be used to quantify all
lows. Previously, we observed that out of the four sets containing 𝑓3,
nly three can be used to quantify all flows. The same statement is
alid for 𝑓1, 𝑓4 and 𝑓5. However, 𝑓2 is different in that all four groups
ontaining 𝑓2 can be used to quantify all flows. The flow importance

indices for Fig. 2 model are:

𝑚(𝑓1) = 𝑚(𝑓3) = 𝑚(𝑓4) = 𝑚(𝑓5) =
3
4
= 0.75, 𝑚(𝑓2) =

4
4
= 1.

The value of 𝑚(𝑓2) is higher than the others because once we know the
value of 𝑓2, quantifying any one of the remaining four flows is sufficient
to derive all flows. This is not true for any of the other flows, implying
that quantifying 𝑓2 before others, or more accurately than others, is
advantageous, which is the goal of LINX.

This section has illustrated how LINX is computed for a simple
model. In the next section we derive a preliminary general mathemati-
cal formulation for LINX, and in Section 6 we improve this formulation
to give the full definition of LINX.

5. LINX: Preliminary general formulation

To construct a preliminary general formulation for LINX, we need
first to find out the minimum number of flows needed to determine all
flows in multi-compartment models in general. For an 𝑛-compartment
model, which always contains 𝑘 > 𝑛 flows, including environmental
inputs and outputs, at least 𝑘−𝑛 flows must be quantified to determine
all flows. This is because the steady-state condition forms a linear
system with 𝑘 variables and 𝑛 equations, leaving 𝑘 − 𝑛 degrees of
freedom (see Appendix A for proof.) However, as in the above example,
not every set of 𝑘 − 𝑛 flows will work. This observation leads to our
preliminary formulation that is given by

𝑚(𝑓𝑖) =
Number of flow sets of size 𝑘 − 𝑛 including 𝑓𝑖, sufficient to determine all flows

Number of flow sets of size 𝑘 − 𝑛 including 𝑓𝑖
.

(8)

We formulate the denominator first. The number of sets containing
𝑘 − 𝑛 distinct flows is the number of subsets of the set of all flows
 = {𝑓1,… , 𝑓𝑘} containing 𝑘− 𝑛 elements. This, in turn, is the number
of combinations of 𝑘 flows taken 𝑘 − 𝑛 at a time:
(

𝑘
𝑘 − 𝑛

)

= 𝑘!
(𝑘 − 𝑛)! 𝑛!

.

ince 𝑓𝑖 has to be one of the elements, we need to count the combi-
ations of the remaining 𝑘 − 1 flows taken 𝑘 − 𝑛 − 1 at a time, which
s

(𝑘 − 1)!
(𝑘 − 𝑛 − 1)! 𝑛!

=
(

𝑘 − 1
𝑛

)

.

ext we formulate the numerator, which is the number of the sets
ounted in the denominator that can be used to determine all the flows.
or instance, to compute 𝑚(𝑓3) for the model depicted in Fig. 2 of the
revious section, first identify all sets containing two flows, one of
hich is 𝑓3: {𝑓1, 𝑓3}, {𝑓2, 𝑓3}, {𝑓3, 𝑓4}, {𝑓3, 𝑓5}. The number of such

sets is
(5−1

3

)

= 4, which is the denominator of the LINX definition
in Eq. (8). The numerator of the preliminary LINX definition only
counts the sets that allow the computation of all flows. To find out if
this is the case for a given set, we need to form the linear equations
that express the undetermined flows in terms of the quantified flows,
as we did in Eqs. (6) and (7). For example, let us derive the system of
linear equations for the first set  = {𝑓 , 𝑓 } the steady-state condition
1 3
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𝑆𝑓 = 0:

⎡

⎢

⎢

⎣

1 −1 −1 0 0
0 1 0 1 −1
0 0 1 −1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

This linear equation should express the unknown flows {𝑓2, 𝑓4, 𝑓5} in
erms of the known flows {𝑓1, 𝑓3} and test if a unique solution exists.
n order to do so, we need to divide the matrix 𝑆 and vector 𝑓 into two

parts accordingly.

⎡

⎢

⎢

⎣

1 −1
0 0
0 1

⎤

⎥

⎥

⎦

[

𝑓1
𝑓3

]

+
⎡

⎢

⎢

⎣

−1 0 0
1 1 −1
0 −1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑓2
𝑓4
𝑓5

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

(9)

In general, let  = {𝑓1, 𝑓2,… , 𝑓𝑘} represent the set of all flows. For a
subset  ⊂  , we define 𝑓 () as a vector containing only the flows in
. Similarly, we define 𝑆() as a matrix formed by the columns of 𝑆
that correspond to the flows in . Then a general version of Eq. (9) is

𝑆()𝑓 () + 𝑆(∖)𝑓 (∖) = 0

where the set ∖ contains all flows that are not in  (i.e., the
complement of ). For our specific example ∖ = {𝑓2, 𝑓4, 𝑓5}. Then
the general form of the linear equation that represents the unknown
flows (∖) in terms of the known flows () is

𝑓 (∖) = −[𝑆(∖)]−1𝑆()𝑓 ().

For our specific example, this equation is

⎡

⎢

⎢

⎣

𝑓2
𝑓4
𝑓5

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

−1 0 0
1 1 −1
0 −1 0

⎤

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎣

1 −1
0 0
0 1

⎤

⎥

⎥

⎦

[

𝑓1
𝑓3

]

which can be simplified as

⎡

⎢

⎢

⎣

𝑓2
𝑓4
𝑓5

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−1 0 0
1 1 −1
0 −1 0

⎤

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎣

𝑓1 − 𝑓3
0
𝑓3

⎤

⎥

⎥

⎦

.

The flows {𝑓1, 𝑓3} can be used to determine all five flows if this
equation is solvable, which only possible if the shown 3 × 3 matrix
is invertible. In general, the flows in set  can be used to uniquely
determine all flows () if and only if the matrix 𝑆(∖) is invertible,
in other words, det(𝑆(∖)) ≠ 0. This observation is all we need to
construct a general formula for 𝑚(𝑓𝑖), which is the proportion of all
flow sets of size 𝑘 − 𝑛 containing 𝑓𝑖, which can be used to compute all
flows

𝑚(𝑓𝑖) =
1

(𝑘−1
𝑛

)

∑

⊂
𝑓𝑖∈

||=𝑘−𝑛

sgn |det(𝑆(∖))| . (10)

In the expression under the sum, the symbol || represents the number
of elements (cardinality) of . Thus, the sum is over the subsets  of
 that have 𝑘 − 𝑛 elements, and contain the 𝑖th flow, 𝑓𝑖. The number
of such sets is

(𝑘−1
𝑛

)

, which is the denominator. For the numerator, we
should count only the sets  with det(𝑆(∖)) ≠ 0. We do that by
taking the absolute value and sign function of the determinant, so that
it equals one if this condition is satisfied, and zero otherwise,

sgn| det(𝑆(∖))| =

{

1, if 𝑆(∖) is invertible,
0, otherwise.

(11)

By this preliminary definition, LINX always takes values between zero
and one. If the LINX value of a flow is one, then it would certainly
be a good idea to quantify that flow first, whereas flows with low LINX
values should be the last ones to be quantified. For most well-connected
ecosystem models, LINX will usually be less than one-half, unlike the
values we observed for the simple models we used for demonstration.
5

6. LINX: Improved formulation

Computation of unknown flows based on quantified flows requires
the solution of a linear system of equations, 𝑈𝑥 = 𝑣, where 𝑣 is a vector
based on quantified flows, 𝑈 is a matrix based on the model’s network
structure, and 𝑥 represents the unknown flows to be determined. For
the three-compartment model shown in Fig. 2, one of these linear
equations is

⎡

⎢

⎢

⎣

−1 0 0
1 1 −1
0 −1 0

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑈=𝑆(∖)

⎡

⎢

⎢

⎣

𝑓2
𝑓4
𝑓5

⎤

⎥

⎥

⎦

⏟⏟⏟
𝑥

=
⎡

⎢

⎢

⎣

𝑓3 − 𝑓1
0

−𝑓3

⎤

⎥

⎥

⎦

⏟⏞⏞⏟⏞⏞⏟
𝑣

. (12)

One issue with the solution of such equations is the propagation of error
from the quantified flows (𝑓1, 𝑓3) to the computed solution (𝑓2, 𝑓4, 𝑓5).
In ideal conditions, one might naively expect that 10% error in 𝑓1, 𝑓3
would imply a 10% error on 𝑓2, 𝑓4, 𝑓5. In reality, the error in 𝑓2, 𝑓4, 𝑓5
can be as high as, but cannot exceed 37.3%. This ‘‘error amplification
factor’’ of 3.73 of a linear equation system is determined by the
condition number of its matrix 𝑈 , which is computed as the ratio of its
maximum singular value to its minimum singular value (Beezer, 2015).

An 𝑛 × 𝑛 linear system will be under-determined and will not have
a unique solution if the corresponding matrix 𝑈 is not invertible. The
condition number of a non-invertible matrix is ∞, meaning that any
small error can be infinitely magnified. Matrices that are very close to
being non-invertible have high condition numbers, meaning that the
solutions they provide have high potential to magnify the errors in
quantified empirical data. This fact is relevant to LINX, as it is based on
the ability of a given flow, when combined with others, to determine
all the flows in a model. Determining the entire flow data in a model
requires the solution of a linear system, like Eq. (12). The preliminary
definition of LINX (10) is entirely based on whether or not this linear
system is solvable (11), but not how accurate the resulting numerical
approximation is for the whole system. In other words, it does not
factor in how the existing error in quantified flows will propagate to
the computed flows. If, for a given set of flows, the condition number
is high, the computed flows will not be nearly as reliable, decreasing the
value of the additional information provided by quantifying those focal
flows. Accurate assessment of this additional information is precisely
the goal of LINX; therefore, the additional information provided by
the condition number should be factored into its formulation. This is
relatively straightforward to accomplish:

Original: 𝑚(𝑓𝑖) =
1

(𝑘−1
𝑛

)

∑

⊂
𝑓𝑖∈

||=𝑘−𝑛

sgn |det(𝑆(∖))| .

evised: 𝑚(𝑓𝑖) =
1
𝑀

∑

⊂
𝑓𝑖∈

||=𝑘−𝑛

1
𝜅(𝑆(∖))

,

𝑀 = max
𝑗

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

⊂
𝑓𝑗∈

||=𝑘−𝑛

1
𝜅(𝑆(∖))

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

(13)

The improved formulation is different in two ways. First, the ex-
ression inside the sum is replaced with the multiplicative inverse
f the condition number, 𝜅, of the relevant matrix. The expression

sgn |det(𝑆(∖))| takes the value 1 or 0 depending on the matrix
𝑆(∖) being invertible or not, respectively. If 𝑆(∖) is not invert-
ible, then 1∕𝜅(𝑆(∖)) = 1∕∞ = 0 as well, matching the preliminary
definition. Unlike the preliminary definition, however, 1∕𝜅(𝑆(∖))
often takes values significantly lower than one if 𝑆(∖) is invertible.
For example, Table 1 shows these values for the three-compartment
model in Fig. 2. For the three sets with non-zero determinants, the
inverse of the condition numbers are 0.25, 0.28 and 0.38. This poses a
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Fig. 3. LINX values of the Silver Springs energy flow model (Odum, 1957; Kemp and Boynton, 2004) is shown using both the preliminary and improved formulation for
comparison. For better visualization, LINX values are indicated by using different line thicknesses. The thicker a flow line, the higher its LINX value. The red dots indicate the
environment (Kazanci, 2007; Schramski et al., 2011).
Table 1
Detailed computation of 𝑚(𝑓3) using the preliminary and improved formu-
lations (13) for Fig. 2 model. The first column lists all four sets (of size
2) containing 𝑓3. The second column uses the preliminary formulation, and
assigns a value of 1 if the two flows (in the first column) can be used to
determine all five flows of the model, and assigns a value of 0 otherwise.
The third column uses the improved formulation and assigns values between
0 and 1, depending on how accurately all five flows can be computed. Sums of
these values are smaller for the improved formulation, and therefore different
scaling factors are used. The single and double underlined values indicate the
preliminary and improved importance indices of 𝑓3, respectively.
 sgn| det(𝑆(∖))| 1∕𝜅(𝑆(∖))

{𝑓1 , 𝑓3} 1 0.28
{𝑓2 , 𝑓3} 1 0.38
{𝑓3 , 𝑓4} 0 0
{𝑓3 , 𝑓5} 1 0.25

Sum𝑓3 3 0.91
Sum𝑓3∕

(5−1
3

)

0.75 0.23
Sum𝑓3∕max

𝑗
{Sum𝑓𝑗 } 0.75 0.71

roblem, as just replacing the expression inside the sum, the improved
mportance index would take the value (0.28 + 0.38 + 0 + 0.25)∕4 =
.23 whereas the preliminary formulation gives (1 + 1 + 0 + 1)∕4 =
.75. To compensate for the characteristic low values of the improved
ormulation, we do not divide the sum by the number of sets

(𝑘−1
𝑛

)

, but
y the maximum such sum. This way, the preliminary and improved
mportance indices achieve comparable values, as shown on Table 2.2

hile the proportion of the values are roughly preserved, the additional
nformation provided by the condition numbers placed the flows 𝑓3 and

2 Actually, for large systems, the preliminary LINX will also generally
roduce importance indices significantly less than one. Thus, in general, to
ompare the preliminary index with the improved index it would be best to
cale both of them so that the largest importance value is 1.
6

Table 2
Comparison of LINX values for the Fig. 2 model computed using the preliminary (10)
and improved (13) formulations.

𝑚(𝑓1) 𝑚(𝑓2) 𝑚(𝑓3) 𝑚(𝑓4) 𝑚(𝑓5)

Preliminary formulation 0.75 1 0.75 0.75 0.75
Improved formulation 0.61 1 0.71 0.71 0.61

𝑓4 ahead of 𝑓1 and 𝑓5, whereas all four flows had the same importance
value according to the older definition.

Fig. 3 shows a more realistic comparison of the improved versus
preliminary LINX formulations using a classical ecological energy-flow
model (Odum, 1957; Kemp and Boynton, 2004). This model has 𝑛 = 5
compartments and 𝑘 = 14 flows, so there exist

(14−1
5

)

= 1287 flow
groups containing any specific flow. In Fig. 3, the thickness of a flow
line indicates its importance. The clear difference between the two
diagrams demonstrates the significant effect of condition numbers on
the importance of flows, which was not observed in the simple three-
compartment model ( Table 1.) Even though the Silver Springs model
is small in size, its slightly more complicated network topology com-
pared to the three-compartment model causes a difference significant
enough to change the order of importance of flows when the improved
formulation is used. For example, according to the preliminary def-
inition, the environmental output of the ‘‘Carnivores’’ compartment
(Carnivores → Environment) is more important than the flow from
‘‘Carnivores’’ to ‘‘Detritus’’ (Carnivores → Detritus.) On the other hand,
it is exactly the opposite when the improved formulation is used. Even
though the improved formulation is slightly more resource intensive to
compute, from here on we will employ it by default, as it provides a
more accurate measure of link importance. The following two sections
discuss several issues that may arise in using LINX for model building,
refining, or tuning. We address some of these with a view to effective
application of the methodology.



Environmental Modelling and Software 133 (2020) 104796C. Kazanci et al.

f
t
t
c
i

o
t
s
i
a
a
p
r

8

M
c
c
M
w
w
t
(

w
i
T
t

7. Practical considerations: Data availability

Quantifying a flow not only informs about its value, but values
of other flows as well, because of the steady-state assumption. LINX
simply computes the amount of this additional information to deter-
mine the importance of each link. This information cannot be accu-
rately computed for flows about which prior information exists from
previous observations, experiments, or literature. Such empirical in-
formation will render LINX information partially useless. Also, known
flow values will provide information on other flows as well, which may
significantly alter LINX values.

It is not just known flow values that affect LINX values. If a model
contains flows that are difficult to measure accurately,3 then any addi-
tional information that can help quantify those flows will be commen-
surately valuable. Such difficult-to-measure flows can have a significant
effect on the LINX values as well. This section explains how LINX is
computed in these two situations using the three-compartment model of
Fig. 2, and illustrates the ideas using an intertidal oyster reef ecosystem
model (Fig. 4.)

We consider three scenarios that can arise about flow 𝑓1 in deter-
mining LINX values in Fig. 2 model:

1. 𝑓1 is already known via pre-existing data, or because it is the
focus of the research question, and so have a high importance
by default;

2. It is not feasible to determine 𝑓1 empirically, and no data for it
exists; and

3. 𝑓1 is known, and it is not feasible to determine 𝑓2 accurately
(combination of the first two cases).

For simplicity, in this example only, we will use the preliminary LINX
formulation. It is possible to compute the LINX values using the prelim-
inary formulation simply by counting, whereas the condition numbers
of several matrices need to be computed in the case of the improved
formulation. In practice, the improved formulation is preferred due to
its accuracy, therefore it will be used for the intertidal oyster-reef model
analysis presented at the end of this section (Fig. 4).

Recall that we defined 𝑚(𝑓𝑖) for the three-compartment model in
Section 4 as the fraction of sets with two flows (𝑘 − 𝑛 = 5 − 3 = 2)
including 𝑓𝑖, that can be used to quantify all flows. Listing all flow sets
with two elements
{𝑓1, 𝑓2}, {𝑓1, 𝑓3}, {𝑓1, 𝑓4},���{𝑓1, 𝑓5}, {𝑓2, 𝑓3}, {𝑓2, 𝑓4}, {𝑓2, 𝑓5},���{𝑓3, 𝑓4},

{𝑓3, 𝑓5}, {𝑓4, 𝑓5}

and striking out the two unusable ones (Section 4), we computed all
five LINX values to be 𝑚(𝑓2) = 1 and 𝑚(𝑓𝑖) = 0.75, 𝑖 = 1, 3, 4, 5. For the
three scenarios listed above, the importance index can be constructed
using this same basic idea. Table 3 lists the relevant sets for each of the
three different scenarios, as well as the importance indices computed
using them. For the first scenario, 𝑓1 is already known, so it should
participate in all flow sets of size two, which reduces the number of
such sets from ten to only four. It is exactly the opposite in the case
of the second scenario, where 𝑓1 cannot participate in any of the sets,
since it is assumed that it is not feasible to quantify 𝑓1 using direct
methods such as field experiments or literature review. Scenario 3 is a
combination of the previous cases, so 𝑓1 should be in all sets, and 𝑓2
cannot be in any of the sets. The computation of importance indices
of all flows is done according to the same definition above, using the
preliminary formulation, and results are shown on Table 3.

3 An ecological example of a difficult-to-measure flow would be a feeding
low for a rare predator that is known to exist in the model, but is so rare
hat obtaining a consumption rate for it is nearly impossible, even considering
he range of empirical methods available, such as direct observation or gut-
ontent analysis, or indirect methods such as metabolic estimates or stable
7

sotope analysis.
Table 3
LINX values are computed for the three-compartment model shown in Fig. 2 for the
following three different scenarios: (i) 𝑓1 is known via pre-existing data, (ii) it is
not feasible to determine 𝑓1 accurately, and (iii) 𝑓1 is known, and it is not feasible
to determine 𝑓2 accurately. The preliminary formulation of LINX is used due to its
simplicity, for demonstration purposes.

Scenario 1 Scenario 2 Scenario 3

Relevant flow
sets

{𝑓1 , 𝑓2}, {𝑓1 , 𝑓3},
{𝑓1 , 𝑓4},���{𝑓1 , 𝑓5}.

{𝑓2 , 𝑓3}, {𝑓2 , 𝑓4},
{𝑓2 , 𝑓5},���{𝑓3 , 𝑓4},
{𝑓3 , 𝑓5}, {𝑓4 , 𝑓5}.

{𝑓1 , 𝑓3}, {𝑓1 , 𝑓4},
���{𝑓1 , 𝑓5}.

𝑚(𝑓1) Known Infeasible Known
𝑚(𝑓2) 1/1 3/3 Infeasible
𝑚(𝑓3) 1/1 2/3 1/1
𝑚(𝑓4) 1/1 2/3 1/1
𝑚(𝑓5) 0/1 3/3 0/1

Comparing the LINX values for each of the three scenarios, we ob-
serve some similarities as well as significant differences. For example,
the LINX value 𝑓3, originally 𝑚(𝑓3) = 0.75, changes to 1, 0.67 and 1 for
each of the three scenarios, respectively. The LINX value of 𝑓5 on the
ther hand, originally 𝑚(𝑓5) = 0.75, changes to 1, 0 and 1 for each of the
hree scenarios, respectively. Drastic changes in 𝑚(𝑓5) under different
cenarios show that prior information and data availability can affect
mportance of flows significantly, and hence, should be taken into
ccount. This observation is not specific to this small and simple model,
nd the preliminary formulation of LINX. Fig. 4 shows four different
rior-information and data-availability scenarios for an intertidal oyster
eef ecosystem using the improved formulation of LINX.

. Practical considerations: Computational feasibility

In this section, we describe how to compute the LINX values using
atlab, and then discuss issues of performance and feasibility. A Matlab

ode that automatically computes the LINX values given a model’s stoi-
hiometric matrix is available at GitHub (Kazanci and Black, 2020) and
atlab Central/File Exchange (Kazanci, 2020). This code is compatible
ith the freely available GNU Octave software (Eaton et al., 2014) as
ell as Matlab. For instance, one can compute the LINX values for the

hree-compartment model of Fig. 2 using only its stoichiometric matrix
Eq. (5)) as follows:

>> S = [ 1 -1 -1 0 0; 0 1 0 -1 -1; 0 0 1 1 0 ];
>> m = LINX( S );
Number Flow LINX (-1:known -2:infeasible):
. 1 * -> 1 0.6057
. 2 1 -> 2 1.0000
. 3 1 -> 3 0.7130
. 4 2 -> 3 0.7130
. 5 2 -> * 0.6057

The results match the ones provided in Table 2. Use of the stoi-
chiometric matrix for ecosystem modeling is not as common as the
adjacency matrix. A second Matlab code named A2S.m is available

ith LINX.m that automatically converts a given adjacency matrix that
ncludes environmental inputs and outputs to the stoichiometric matrix.
herefore the same results shown above can be obtained by executing
he command LINX(A2S(A)), where A is the adjacency matrix of the

model.
It is also possible to use the same code in case of prior information,

or if some flows are difficult to obtain. For instance, the LINX values
corresponding to the three scenarios provided on Table 3 can be
computed as follows, by simply listing the flows that are known or are
infeasible to compute:
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Fig. 4. LINX values are indicated for each flow of an oyster reef energy-flow model (Dame and Patten, 1981). Thicker arrows indicate higher LINX values. Figure (A) involves no
prior information. Figure (B) assumes prior knowledge of four flow rates, indicated by red dotted lines. Figure (C) assumes the same four flows cannot be accurately determined,
indicated by blue dashed lines. Figure (D) assumes two flows with prior information (red dotted) and two (blue dashed) that cannot be accurately determined. The LINX values
are ordered differently under each scenario.
>> S = [ 1 -1 -1 0 0; 0 1 0 -1 -1; 0 0 1 1 0 ];
>> m = LINX( S, [1], [] );
Number Flow LINX (-1:known -2:infeasible):
. 1 * -> 1 -1.0000
. 2 1 -> 2 0.9217
. 3 1 -> 3 1.0000
. 4 2 -> 3 0.9217
. 5 2 -> * 0.0000
>>m = LINX( S, [], [1] );
Number Flow LINX (-1:known -2:infeasible):
. 1 * -> 1 -2.0000
. 2 1 -> 2 1.0000
. 3 1 -> 3 0.6222
. 4 2 -> 3 0.6429
. 5 2 -> * 0.7537
>>m = LINX( S, [1], [2] );
Number Flow LINX (-1:known -2:infeasible):
. 1 * -> 1 -1.0000
. 2 1 -> 2 -2.0000
. 3 1 -> 3 1.0000
. 4 2 -> 3 0.9217
. 5 2 -> * 0.0000
8

These results are slightly different than provided on Table 3 because
in the latter case the preliminary formulation of LINX was used for its
simplicity. The results presented here use the improved formulation.

Figs. 3 and 4 are automatically generated using Graphviz. Graphviz
uses a text file with ‘‘dot’’ extension to create images in multiple for-
mats. A Matlab file named LINXdiagram.m that automatically generates
this text file, which then can be used to create a network diagram, is
provided at GitHub (Kazanci and Black, 2020) and Matlab Central/File
Exchange (Kazanci, 2020).

One limitation of this code is its slowness for large models. This is
because all possible combinations of flows must be examined, which is
a computationally expensive process. It is possible to make use of the
row-reduced echelon form (RREF) of the stoichiometric matrix to limit
the number of combinations to be tested. This more complicated algo-
rithm scales better for larger models, and further details are provided
in Appendix B. A faster C++ code based on this algorithm is provided
along with the Matlab code at GitHub (Kazanci and Black, 2020).

In the case of extremely large models, even the faster C++ code
might not be feasibly utilized. It is not possible to provide a specific
threshold however, as network topology and prior flow information
(Section 7) have a significant effect on speed. In general, models with
high connectances (Dunne et al., 2002) are expected to run slower, and
models with prior information will definitely run faster. For example
the number of flow combinations that needs to be tested for the oyster
reef ecosystem model shown in Fig. 4 is 27132. Under the three differ-
ent scenarios shown on the same figure, the number of combinations
decrease to 5005, 105 and 1365 for cases B, C and D, respectively. In

other words, knowledge that four of the nineteen flows are unlikely to
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be determined empirically, makes the algorithm about 270 times faster,
in theory. In practice, the oyster reef model is small enough that all
cases run almost instantly on a regular personal computer. This happens
to be case for models of similar size. The difference can be drastic for
large or complex models, however.

Model size and complexity are decidedly limiting factors in the
applicability of the present LINX methodology to realistically com-
plex systems studies, such as those undertaken in large continuing
studies like the US National Science Foundation’s Long Term Ecolog-
ical Research (LTER) and National Ecological Observatory Network
(NEON) programs. Even at such ambitious research scales, our LINX
methodology could provide guidance for targeting empirical research to
quantify flows in incomplete model flow networks as they are created,
quantified, and revised over the life of projects.

In most cases large complex ecosystem models are the result of
long-term team-based research projects, and empirical research would
provide prior information on some of the model flows. Since prior
information often provides for feasible application of the LINX al-
gorithm, many of these models could use this methodology. Large
models typically contain model sectors, which are groups of com-
partments that share many characteristics, such as microautotrophs,
microheterotrophs, or macroheterotrophs. Since teams of researchers
are often responsible for a certain model sector, such sectors might have
some flows quantified and could be analyzed with the LINX algorithm
as sub-system matrices, as well as the full model being analyzed at
various stages in the model-building process.

9. Conclusion

Computational methods serve as an essential part of compartmental
network-flow modeling. Their utilization, however, usually occurs after
parameters have been determined through empirical data collection,
missing data methods and literature search. The computational method
of this paper is applied early in the parametrization phase of modeling,
after some flow data, but not all, have been acquired. Exploiting
conservation laws and network topology, LINX enables modelers to
make informed decisions that guide the data collection, helping to
build a more accurate model while minimizing resources necessary to
determine flow values.

The usefulness of LINX is not just limited to before data collection.
As Fig. 4 demonstrates, quantifying four flows produces system-wide
large changes in the LINX values of the subsequent partially-quantified
flow network. In other words, the quantification of a few focal flows
can dramatically change the LINX values of other flows. The process
described in Section 7 can be utilized repeatedly during the model-
building process, and can identify which remaining flows are going to
be redundant, eliminating further costly and potentially unnecessary
empirical measurements. Furthermore, modelers may utilize redundant
flows to increase the accuracy of other flows that may contain relatively
greater errors. In other words, they can use LINX to identify which
specific flows will help increase the accuracy of the others.

Finally, the significant effect of prior knowledge about specific flows
on the LINX values of other flows reflects on the organization of large,
complex, self-assembling systems like ecosystems. From the way our
present algorithm works it is possible to infer that the importance
structure of flows in ecosystems is very fluid and changing indeed in
response to other network flows extant or not extant at any given time
or place.
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Appendix A. Minimum number of flows required to determine all
flows

Theorem 1. The rank of the 𝑛 × 𝑘 stoichiometric matrix 𝑆 of any open
nd connected ecosystem model equals 𝑛, the number of its compartments. In
ther words, its rows are linearly independent, and so are 𝑛 of its columns.

roof. First we note that 𝑛 ≤ 𝑘 (i.e., there are at least as many flows as
here are compartments) since the system is connected and open. Also
ank(𝑆) ≤ min(𝑛, 𝑘) ≤ 𝑛 by definition. Assume for contradiction that
ank(𝑆) < 𝑛; then there is a nontrivial linear combination of the rows
𝑚 such that
𝑛
∑

=1
𝑐𝑚𝐫𝑚 = 𝟎, but 𝑐𝑚 ≠ 0 for some 𝑚. (A.1)

ote that each of the 𝑘 flows is attached to either one or two compart-
ents. By construction, then, each column of 𝑆 has either one or two
onzero entries. Since the system is open, there is at least one column
ith only one nonzero entry. Let the 𝑖th column be one of these. It

orresponds to an environmental flow into or out of some compartment
, corresponding to the 𝑠th row , 𝐫𝑠, of the matrix. This flow is not
onnected to any other compartment. We use induction on the length
f the shortest path from compartment 𝑏 to 𝑠 to arrive at a contradiction
s follows:

The 𝑖th entry of every row but 𝐫𝑠 is zero, necessitating 𝑐𝑠 = 0. In-
uctively, assume any compartment 𝑎 with shortest path length 𝐿 from
has 𝑐𝑎 = 0. Let compartment 𝑏 have distance 𝐿+ 1 to compartment 𝑠;

certainly, 𝑏 must be connected via flow 𝑗 to some 𝑎 which satisfies the
nductive hypothesis. Only 𝒓𝑎 and 𝒓𝑏 have nonzero entries in column 𝑗,
o that 𝑐𝑎 = 0 ⟹ 𝑐𝑏 = 0 also.

The system is connected, whence every coefficient is zero by the
nduction above, contradicting 𝑐𝑚 ≠ 0 for some 𝑚. Thus, rank(𝑆) =
. □

emark. This theorem shows that there exist collections of 𝑛 flows
uch that the corresponding columns of 𝑆 are linearly independent (and
hus the 𝑛× 𝑛 matrix formed by these columns is invertible). However,
s evident from examples in the paper, it is often not the case that every
ollection of 𝑛 columns yields an invertible matrix.

ppendix B. A faster algorithm

The minimum number of flows required to determine all flows is
stablished within the main body of the primary paper. One immediate
ask is to determine an algorithm to determine which combinations
f the flows determine the feasible sets. In other words, which set of
flows can be used to calculate all of the remaining flows. We will

all these sets acceptable. Here we define two methods for searching
he acceptable sets of flows. The first is a brute force method, and
he second makes use of the row reduced echelon form (RREF) of the
toichiometric matrix to limit the number of combinations that are
ested. Codes for both approaches are publicly available (Kazanci and

lack, 2020).
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The first method is to simply examine all possible 𝑛 element sets
f flows. An advantage of this method is it makes use of standard
ibraries readily available to calculate the combinations to test. Another
dvantage is that it is complete and robust. Every combination is tested
nd none will be missed. The shortcoming is that the algorithm does not
cale well to larger systems, and a system with a larger number of nodes
ay require a long time to search through all possible combinations.

The approach to examine all possible combinations is a compu-
ationally expensive process, so another approach is explored that is
esigned to reduce the operation count. The primary disadvantage of
he alternate method is that its implementation is more complicated.
he basic idea is that the RREF of the stoichiometric matrix can be
sed to more narrowly define which columns of the stoichiometric
atrix are linearly dependent. To better describe the approach, we first
escribe the problem given in Section 3 of the original paper. As a
eminder, the linear system for the example can be expressed in the
orm

=
⎡

⎢

⎢

⎣

1 −1 0 0
0 1 −1 0
0 0 1 −1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑓1
𝑓2
𝑓3
𝑓4

⎤

⎥

⎥

⎥

⎥

⎦

= 0. (B.1)

e note that Eq. (B.1) represents a system in the form

𝑓 = 0. (B.2)

n general, the matrix 𝑆 has 𝑛 rows and 𝑘 columns, the vector 𝑓 has
rows, and the zero vector on the right hand side has 𝑛 rows. An

lternate representation for the system is to express 𝑆 in terms of its
olumns and the vector 𝑓 as

𝑠1 𝑠2 ⋯ 𝑠𝑘
]

⎡

⎢

⎢

⎢

⎢

⎣

𝑓1
𝑓2
⋮
𝑓𝑘

⎤

⎥

⎥

⎥

⎥

⎦

= 0. (B.3)

ere the column vector 𝑠𝑖 represents the entries in the stoichiometric
atrix corresponding to whether or not there is an inflow or outflow

or node 𝑖 for a given flow. The system can be expanded to express it
n an equivalent form,

1𝑠1 + 𝑓2𝑠2 ⋯ + 𝑓𝑘𝑠𝑘 = 0. (B.4)

he goal is to test all sets of 𝑛 linearly independent vectors from 𝑠𝑖.
he linear system given in Eq. (B.2) can be put in row reduced echelon
orm. This will transform the system where the 𝑠𝑖 can be more easily
ompared as a way to rule out which columns might be expressed in
erms of another column.

We first examine the example system given in Eq. (B.1). The system
ith the RREF of the matrix is given by

1 0 0 0 −1
0 1 0 1 −1
0 0 1 −1 0

⎤

⎥

⎥

⎦

𝑓 = 0

he task is to determine all sets that contain three column vectors that
epresent a linearly independent set. The first thing to notice is that
he first row in the RREF matrix implies that 𝑠1 and 𝑠5 must be equal.
nless there is a nonzero entry in 𝑠5 after the first row then there is no
eed to check a set of vectors that have both 𝑠1 and 𝑠5. The search for
he first vector in the candidate sets can be conducted by using the first
ow and searching all sets where the first vector is 𝑠1 or the first vector
s 𝑠5. Given these two initial vectors for a candidate set, the second
ow can then be searched. Because there are zeros in the second row
or columns 1 and 3, a set of candidates for the second vector in the
cceptable sets include the vectors 𝑠2, 𝑠4, or 𝑠5. Finally, based on the
hird row, the only non-zero entries are in columns three and four, so
andidates for the acceptable sets include those sets where the third
10

ector is either vectors 𝑠3 or 𝑠4.
The general algorithm makes direct use of the row reduced echelon
form of Eq. (B.2). The recursive algorithm proceeds by first testing sets
where the first vector is one of columns that has a non-zero coefficient
in the first row of the RREF form of the stoichiometric matrix. Each
column in the second row that has a non-zero coefficient is then
included for the second element of the possible sets. The algorithm then
proceeds through each of the following rows until all possible sets of
the columns have been tested.

Compared to the exhaustive method described above, this algorithm
reduces the number of columns to test. The expense, though, is the
use of a recursive algorithm that adds additional overhead. Another
downside of the algorithm is that it requires additional book keeping
and checking to insure that previously used combinations are not
reused.

The C++ code requires that the stoichiometric matrix be defined
in a regular text file. The first lines in the text file consist of the
stoichiometric matrix. Each line is a row in the matrix, and the numbers
are separated by spaces. Two optional lines can be appended below
the stoichiometric matrix. One line can be used to define which flows
are known in advance (known). The other line can be used to specify
which flows cannot be measured (unknown). An example of a file is
given below, where it is assumed that the flows for nodes 1, 3, and 6
are known while the flows for nodes 2, 5, and 11 cannot be determined.

1 -1 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
0 1 0 -1 -1 -1 0 0 1 0 1 0 1 0 -1 0 0 0 0
0 0 0 1 0 0 -1 -1 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 1 0 1 0 -1 -1 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 1 0 1 0 1 -1 -1 0 0 0 0 0 -1 0
0 0 1 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 -1
known: 3 6 1
unknowable: 2 5 11

When the C++ program is run the name of the program (opti-
malFlow) is used to start the program. The name of the file to read is
provided on the command line after the program name. For example, if
the file shown above is named ‘‘oyster.txt’’ then the command to run the
program is ‘‘opimtimalFlow oyster.txt’’ The program will read the file
and determine approximations to the impact for each node. An example
of the output for the text file above is given below:

Unknowable: 3-6-12
Known: 2-4-7
Number Flow Impact
1 *->1 0.82301
2 1->2 (known)
3 1->6 NA (unknowable)
4 2->3 (known)
5 2->4 0.74658
6 2->5 NA (unknowable)
7 3->4 (known)
8 3->5 0.55752
9 4->2 0.71440
10 4->5 0.80692
11 5->2 1.00000
12 5->6 NA (unknowable)
13 6->2 1.00000
14 1->* 0.82301
15 2->* 0.84232
16 3->* 0.34674
17 4->* 0.61062
18 5->* 0.87450
19 6->* 0.85438
Press <RETURN> to close this window...
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