Ph.D. Comprehensive Examination on Algebra

Fall 2003

You have three hours to complete this exam. Please write your solutions in a clear and concise fashion.

1. Suppose \(R \) is a commutative ring with identity where \(1_R \neq 0 \). Prove that the following are equivalent.
 (i) \(R \) is a field;
 (ii) \(R \) has no proper ideals;
 (iii) \(0 \) is a maximal ideal in \(R \);
 (iv) every nonzero homomorphism of rings \(R \to S \) is a monomorphism.

2. State the three Sylow theorems. Prove that there are no simple groups of order 36.

3. Compute the Galois group of \(x^4 + 1 \) over \(\mathbb{Q} \).

4. Let \(A \) be a symmetric real \(n \times n \) matrix. Show that all the eigenvalues of \(A \) must be real and that the eigenvectors corresponding to the different eigenvectors are orthogonal.

5. Determine the Jordan canonical form of the following matrix:

\[
\begin{pmatrix}
-1 & 1 & 0 & 0 & 0 \\
-4 & 3 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 2
\end{pmatrix}.
\]

6. Prove that every group of order \(p^2q \) where \(p \) and \(q \) are primes is solvable.

7. Let \(K \) be a field. Prove that the polynomial ring \(K[x] \) is a principal ideal domain.

8. Let \(R \) be a ring and \(f : M \to N \) and \(g : N \to M \) be \(R \)-module homomorphisms such that \(g \circ f = \text{id}_M \). Show that \(N \cong \text{Im} f \oplus \text{Ker} g \).