Qualifying Exam - Analysis

Problem 1. Let f(x) be a continuous function which maps the interval [0,1] into itself.

- a) Prove that there exists an x between 0 and 1 for which f(x) = x.
- b) Prove that if in addition f(0) = f(1) = 0 and f(1/2) = 1 then there exist $0 \le x < y \le 1$ for which f(x) = y and f(y) = x.

Problem 2. Let E be a Lebesgue measurable subset of the real line of positive measure.

a) Give the definition of x being a Lebesgue point of E and show that for every $\epsilon > 0$ and N > 0 there exists an $n \geq N$ and an interval I of length 2^{-n} such that:

$$m(E \cap I) \ge (1 - \epsilon)m(I)$$

where m(E) denotes the Lebesgue measure of the set E.

b) Prove that if $E+2^{-n}=E$ for every rational r then either m(E)=0 or $m(\Re/E)=0$. Here $E+r=\{x+r:\ x\in E\}$ is the translate of the set E by r.

Problem 3. Let $f(x) = \sum_{n=0}^{\infty} 3^{-n} \sin(9^n \pi x)$.

Show that f(x) is uniformly continuous. Find a point where it is not differentiable.

Problem 4. State Fatou's lemma. Give an example of a sequence of functions satisfying the hypothesis of Fatou's lemma, for which strict inequality holds in the conclusion.

Problem 5. Prove that any two norm on a finite dimensional linear space X is equivalent, that is there are constants 0 < c < C such that for all $x \in X$:

$$c||x||_1 \le ||x||_2 \le C||x||_1$$

Prove that any finite dimensional subspace of a complete normed linear space X is closed and nowhere dense (completeness means that of the associated metric d(x,y) = ||x - y||).

If the space X is not finite dimensional can it be a countable union of finite dimensional subspaces? Can it have a countable basis as a linear space?

Problem 6. Consider the convolution:

$$f * g(x) = \int_{\Re} f(x - t)g(t) dt$$

where f is continuous of compact support and $g = \chi_{[a,b]}$ is the indicator function of the interval [a,b].

Show that (f * g)'(x) = f(x-a) - f(x-b) and thus f * g is continuously differentiable of compact support.

Hint: Change variables $t \to t - h$ in evaluating f * g(x + h) and use the mean value theorem to calculate the limit 1/h(f * g(x + h) - f * g(x)) as $h \to 0$.

Problem 7. Compute the integral:

$$\int_{-\infty}^{\infty} \frac{1}{(1+x^2)^2} dx$$

Problem 8. State Schwarz' lemma.

Prove that if f and g are holomorphic mappings of the unit disc U into an open domain Ω , f is one-to-one, $f(U) = \Omega$ and f(0) = g(0), then

$$g(D(0,r)) \subseteq f(D(0,r))$$

for all 0 < r < 1, wher D(0, r) is the open disc of radius r.

Problem 9. State Rouche's theorem. Prove that

$$\max_{|z|=1} |a_0 + a_1 z + \dots a_{n-1} z^{n-1} + z^n| \ge 1$$

Problem 10. Let Ω be the upper half of the unit disc U. Find the conformal mapping f of Ω onto U that carries $\{-1,0,1\}$ to $\{-1,-i,1\}$.

Hint: Try $f = t_{\alpha} \circ s \circ t_{\beta}$, where $s(z) = z^2$ and $t_{\alpha} = \frac{z - \alpha}{1 - \alpha z}$ is a linear fractional transformation.