Algebra Qualifying Exam, Fall 2002

The questions are all of equal value.

1. Let R be a commutative ring. Prove that if every ascending chain of ideals in R stabilizes, then every ideal in R is finitely generated.
2. i) Let p be a prime number and let S be a group whose order is a power of p. Let X be a finite set on which S acts. Prove that the number of elements of X is congruent modulo p to the number of fixed points.
ii) Let S and S^{\prime} be Sylow p-subgroups of a finite group G. By letting S^{\prime} act on G / S, deduce from part i) that S and S^{\prime} are conjugate.
3. Let M denote the \mathbb{Z}-module with two generators α_{1} and α_{2}, subject to the relations

$$
\begin{aligned}
111 \alpha_{1}+63 \alpha_{2} & =0 \\
6 \alpha_{1}+3 \alpha_{2} & =0
\end{aligned}
$$

Express M as a direct sum of cyclic modules.
4. Let A be a square matrix over an algebraically closed field K, such that A has only one eigenvalue. Prove: The minimal polynomial of A equals the characteristic polynomial of A if and only if every matrix that commutes with A is a polynomial in A.
5. Let a, b, c be rational numbers, and let E be the splitting field over \mathbb{Q} of the polynomial $f(x)=x^{3}-a x^{2}+b x-c$. Let R be the algebra over \mathbb{Q} generated by three letters $\alpha_{1}, \alpha_{2}, \alpha_{3}$, subject to the relations

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}=a, \quad \alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}=b, \quad \alpha_{1} \alpha_{2} \alpha_{3}=c .
$$

Prove that $\operatorname{Gal}_{\mathbb{Q}}(E)=\Sigma_{3}$ if and only if R is a field. (Σ_{3} denotes the symmetric group on three letters.)
(Hint: Write down a homomorphism from R to E.)
6. Consider the rings $R=\mathbb{Q}[x] /\left(x^{5}\right)$ and $S=\mathbb{Q}[x] /\left(x^{3}\right)$. Regard S as an R-module via the homomorphism $R \rightarrow S$ sending x to x. Prove that if M is a finitely generated R-module, and $M \otimes_{R} S=0$, then $M=0$.
(Hint: Show that the natural map $M \rightarrow M / x M$ factors through $M \otimes_{R} S$.)

