Ph.D. Prelim: Probability Theory, August 2000

(Solve at least 5 problems completely.)

1. (a) If X and Y are independent random variables and F(y) is the distribution function of Y, show that

$$P(Y \le X) = E[F(X)].$$

- (b) Suppose that X and Y are independent random variables with the same exponential density $f(x) = \theta e^{-\theta x}$. Show that the sum X + Y and the ratio X/Y are independent.
- 2. (a) Show that every real valued characteristic function $\phi(t)$ satisfies the inequality

$$1 + \phi(2t) \ge 2[\phi(t)]^2$$
.

(b) Show, for any two random variables X and Y with $Var(X) < \infty$, that

$$Var(X) = E[Var(X|Y)] + Var[E(X|Y)].$$

3. Show that random variables X_n , $n \geq 1$, and X satisfy $X_n \to X$ in distribution iff

$$E[F(X_n)] \to E[F(X)]$$

for every continuous distribution function F.

- 4. (a) Quote without proof a WLLN.
 - (b) Prove the Weierstrass Approximation Theorem using a LLN.
- 5. If $\{X_n\}$ are iid random variables with $E|X_1|^p=\infty$ for some $p\in(0,2)$, show that

$$P\bigg(\limsup_n \frac{S_n}{n^{\frac{1}{p}}}\bigg) = 1.$$

- 6. (a) Let X_n and Y_n be sequences of random variables. Suppose $X_n \to X$ in distribution and $Y_n \to c$ in probability, where c is a nonzero constant. Show that $X_n/Y_n \to X/c$ in distribution.
 - (b) Let $\{X_n, n \geq 1\}$ be a sequence of iid random variables with $EX_n = 0$ and $Var(X_n) = 1$, for all $n \geq 1$. Let $S_n = X_1 + X_2 + \cdots + X_n$. Show that, as $n \to \infty$,

$$Y_n = \frac{S_n}{\sqrt{\sum_{i=1}^n X_i^2}} \to N(0,1)$$
, in distribution.

- 7. (a) State (without proof) the Doob's maximum inequality and Kolmogorov's inequality.
 - (b) Let \mathcal{F}_n be a family of σ -algebras such that

$$\mathcal{F}_1\supset\mathcal{F}_2\supset\cdots$$

and X be an integrable random variable. Show that

$$E[X|\mathcal{F}_n] \to E[X|\mathcal{F}_{\infty}]$$
 a.s. and in L^1 ,

where $\mathcal{F}_{\infty} = \bigcap_{n=1}^{\infty} \mathcal{F}_n$.