Qualifying Examination in Complex Analysis January 2012

All problems are equally weighted. For $a \in \mathbb{C}$ and r > 0, B(a, r) denotes the open disk centered at a with radius r and $\overline{B}(a, r)$ denotes the closure of B(a, r).

- 1. (a) State Cauchy's Integral Formula for functions holomorphic on $\overline{B}(a, r)$.
 - (b) Use part (a) to prove that every holomorphic function on B(a, r) can be represented by a power series.
 - (c) Use part (a) to prove that every bounded entire function is constant.
- 2. Use the methods of complex analysis to evaluate $\int_0^\infty \frac{x \sin x}{x^2 + a^2} dx$.
- 3. Let f = u + iv be differentiable (i.e. f'(z) exists) with continuous partial derivatives at a point $z = re^{i\theta}$, $r \neq 0$. Show that

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

- 4. Let $f : \mathbb{C} \to \mathbb{C}$ be an injective analytic function. Show that there are $a, b \in \mathbb{C}$ such that f(z) = az + b. (Hint: Start by proving that f is a polynomial.)
- 5. Let $f(z) = \frac{z+2012}{5z^2+5z}$. Give the Laurent expansion of f that converges on (a) $\{z \in \mathbb{C} \mid 0 < |z| < 1\}$. (b) $\{z \in \mathbb{C} \mid |z+1| > 1\}$.
- 6. Find a conformal map from $D = \{z : |z| < 1, |z 1/2| > 1/2\}$ to the unit disk B(0, 1).