Show your work and justify all your reasoning.

1. (a) Give the power series expansion about \(z = 1 \) of the branch of \(f(z) = z^i \) with \(f(1) = 1 \). Find its radius of convergence.
(b) Find all solutions of the equation \(z^i = i \).

... 2. Let \(U \subset \mathbb{C} \) be a simply connected domain and \(f : U \to \mathbb{C} \) a holomorphic function. Show, using only advanced calculus, that
\[
\int_{\gamma} f(z) \, dz = 0
\]
for any smooth closed loop \(\gamma \subset U \).

3. Prove that there is no meromorphic function \(f \) on \(\mathbb{C} \) such that \(f(x) = \arctan x \) for all \(x \in \mathbb{R} \).

4. Give the Laurent expansion of \(\frac{1}{z(z-1)} \) in (a) the annulus \(\{0 < |z| < 1\} \) and (b) the annulus \(\{1 < |z| < 2\} \).

5. Compute
\[
\int_0^\infty \frac{\sqrt{x}}{x^2 + 1} \, dx.
\]

6. Give a formula for a conformal mapping from the region
\[
U := \{re^{i\theta} : 0 < r < 1, \, 0 < \theta < \frac{\pi}{4}\}
\]
on onto the unit disk.

7. Suppose \(f(z) \) is a meromorphic function on \(\mathbb{C} \) such that \(\lim_{z \to \infty} |f(z)| \) exists (possibly taking the value \(\infty \)). Show that \(f \) is a rational function.

8. Let \(U \subset \mathbb{C} \) be a domain and \(F : [0,1] \times U \to \mathbb{C} \) a bounded continuous function such that \(z \mapsto F(t,z) \) is holomorphic on \(U \) for every \(t \in [0,1] \). Define \(f : U \to \mathbb{C} \) by
\[
f(z) = \int_0^1 F(t,z) \, dt.
\]
Prove that \(f \) is holomorphic.