PhD. prelim in Complex Analysis, Spring 1997.

1. Prove any form of the Cauchy-Goursat theorem; (eg. a function holomorphic in an open set in \(\mathbb{C} \) which contains the boundary \(\gamma = \partial \Delta \) and interior of a triangle \(\Delta \), has zero integral around \(\gamma \)).

2. Prove the following form of the "Casorati-Weierstrass" theorem: if \(f: \mathbb{C} \to \mathbb{C} \) is a holomorphic entire function, and if there is a neighborhood \(U = \{ z : |z| > r > 0 \} \) of infinity whose image \(f(U) \) is not dense in \(\mathbb{C} \), then \(f \) is a polynomial.

3. Prove that a sequence of functions holomorphic in an open set \(U \), and which converges uniformly on all closed discs in \(U \), has a limit which is holomorphic in \(U \).

4. Use residues to calculate the real integral \(\int_{-\infty}^{\infty} \frac{dx}{1+x^4} \), and justify your calculation.

5. a) Let \(A = \{ z : \text{Im}(z) > 0 \text{ and } -\pi/2 < \text{Re}(z) < \pi/2 \} \). Find an explicit formula for a (one to one) conformal mapping of the region \(A \) onto the interior of the unit circle.
 b) Let \(B = \{ z : \text{Re}(z) > (\text{Im}(z))^2 - 1 \} \) be the region on the "right side" of the parabola \(x = y^2 - 1 \). Prove or disprove: for every pair of distinct points \(\alpha, \beta \) in \(B \), there is a (one to one) conformal mapping of the region \(B \) to itself, taking 0 to \(\alpha \), and 1 to \(\beta \).

6. (a) Let \(\Omega = \{ n + mi \text{, for all integers } n,m \} \) denote the lattice of "Gaussian integers". Let \(f \) be a complex valued function holomorphic at all \(z \) not belonging to \(\Omega \), and assume that \(f(z) = f(z+\omega) \) for all \(z \) in \(\mathbb{C} - \Omega \), and all \(\omega \) in \(\Omega \). If at \(z = 0 \), \(f \) is either holomorphic or has at worst a simple pole, prove \(f \) is constant.
 (b) Construct a non constant meromorphic function \(g \) on \(\mathbb{C} \), such that \(g(z) = g(z+\omega) \) for all \(z \) in \(\mathbb{C} - \Omega \), and all \(\omega \) in \(\Omega \).

7. Classify all holomorphic automorphisms \(f: \mathbb{C} \cup \{ \infty \} \to \mathbb{C} \cup \{ \infty \} \) of the Riemann sphere.

8. Construct an entire function with simple zeroes at the (positive) square roots of the positive integers, \(\{ n^{1/2} \} \), \(n > 0 \), and no other