COMPLEX ANALYSIS PRELIMINARY EXAMINATION May 8, 1995

N.B. Throughout this exam, let

$$\Delta = \{z : |z| < 1\},\$$
 $T = \{z : |z| = 1\}, \text{ and }$
 $\overline{\Delta} = \Delta \cup T = \{z : |z| \le 1\}.$

Work all eight problems.

- 1. (10 points) Give the Laurent series of $f(z) = \frac{e^z}{z z^2}$ converging on a. $\{z : 0 < |z| < 1\}$
 - b. $\{z: 1 < |z|\}$
- 2. (15 points) Evaluate by contour integration:

$$\int_0^\infty \frac{x \sin x}{x^2 + 4} \, dx \; .$$

Be sure to provide sufficient detail and justification.

- 3. (10 points) Give a conformal map from the region $D = \{z : 0 < Re \ z < \frac{\pi}{2}, \ Im \ z > 0\}$ to the upper half plane.
- 4. (15 points) Suppose f is analytic on a region $\Omega \subset \mathbb{C}$ containing the unit disk Δ . Suppose that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for $z \in \Delta$ and assume that this series has radius of convergence 1.
 - a. Give a self-contained proof that there is at least one point $z \in T$ so that f is not analytic at z.
 - b. Give examples of the following:
 - (i) such a series convergent everywhere on T
 - (ii) such an f analytic at all but two points of T
 - (iii) such an f analytic at $z_0 \in T$ with $\sum_{n=0}^{\infty} a_n z_0^n$ divergent

- 5. (10 points) Suppose f is analytic on a simply connected domain Ω . If C is a simple closed curve lying in Ω and f is one-to-one on C, prove that f is one-to-one on the interior of C as well.
- 6. (15 points) Suppose \mathcal{F} is a collection of analytic functions $f:\Omega\to\mathbb{C}$. Suppose that for each compact set $E\subset\Omega$ there is a constant M_E so that

$$\sup_{z\in E}|f(z)|\leq M_E\quad\text{for all }f\in\mathcal{F}\;.$$

Give a self-contained proof that for each compact set $E \subset \Omega$ there is a constant N_E so that

$$\sup_{z\in E}|f'(z)|\leq N_E\quad\text{for all }f\in\mathcal{F}\;.$$

- 7. (10 points) Do ONE of the following problems:
 - a. Let $\Omega \subset \mathbb{C}$ be a domain. Suppose a continuous function $u: \Omega \to \mathbb{R}$ has the mean value property, i.e., for each $a \in \Omega$ and all r > 0 sufficiently small,

$$\frac{1}{2\pi}\int_0^{2\pi}u(a+re^{it})\,dt=u(a).$$

Prove u is harmonic in Ω .

b. Prove that the function $f(z) = \sqrt{z^2 - 1}$ has an analytic branch on $\mathbb{C} - [-1, 1]$. Let γ denote the circle |z| = 5, oriented counterclockwise. Evaluate

$$\int_Y f(z)\,dz\,.$$

- 8. (15 points) Do ONE of the following problems:
 - a. Classify the one-to-one entire functions.
 - b. Suppose $f: \overline{\Delta} \to \mathbb{C}$ is continuous, analytic on Δ , and |f(z)| = 1 on |z| = 1. Prove that f extends to a rational function on \mathbb{C} .