Complex Analysis Qualifying Exam – Fall 2024

All problems are of equal weight. Please arrange your solutions in numerical order even if you do not solve them in that order. Show work and carefully justify/prove your assertions.

1. Suppose that f is an entire function and that for every $z_0 \in \mathbb{C}$, in the power series

$$f(z) = \sum_{n=0}^{\infty} a_n (z_0) (z - z_0)^n$$

there is $n \ge 0$ such that $a_n(z_0) = 0$. Prove that f is a polynomial.

2. For any integer $N \ge 2$, compute

$$\int_0^\infty \frac{dx}{1+x^N}.$$

[Hint: It is convenient to compute an integral along the path from 0 to R, from R to $Re^{2\pi i/N}$ and finally from $Re^{2\pi i/N}$ to 0.]

- 3. Let f(z) be holomorphic on a region Ω containing the closed unit disc. Suppose: (1) f(0) = 0;
 - (2) f(iz) = f(z) for all $z \in \Omega$; and
 - (3) $|f(z)| \le 2024$ for all |z| < 1.

Prove that |f(1/7)| < 1.

[Hint: consider the power series expansion of f at 0.]

- 4. Let $\alpha \in \mathbb{C}$, $|\alpha| = 1$.
 - (a) Find the number of solutions of the equation $\sin z = \frac{\alpha}{z^2}$ in the strip $\frac{\pi}{2} < \text{Re}(z) < \frac{3\pi}{2}$.
 - (b) Find the number of solutions to the above equations in the strip $|\operatorname{Re}(z)| < \frac{\pi}{2}$.

[Hint: Estimate $|\sin z|$ from below when $\operatorname{Re}(z) = k\pi + \frac{\pi}{2}, k \in \mathbb{Z}$, and use Rouché's Theorem.]

- 5. Find an explicit conformal mapping ϕ from the strip $S := \{ |\text{Im}(z)| < 1 \}$ onto the region $\Omega := \{ |z 3/4| > 1/4 \} \cap \{ \text{Re}(z) < 1 \}.$
- 6. Let f(z) be an entire function. Assume there are constants M, R > 0 and an integer n > 0 such that $|f(z)| \ge M|z|^n$ for all |z| > R. Prove that f is a polynomial of degree at least n.
- 7. Let $f \colon \mathbb{R} \to \mathbb{C}$ be a continuous function with compact support such that for every integer $n \ge 0$ we have

$$\int_{\mathbb{R}} f(x) x^n e^{-x^2} \, dx = 0.$$

Prove that f = 0.

[Hint: Consider the function $F: \mathbb{C} \to \mathbb{C}$ defined by $F(z) = \int_{\mathbb{R}} f(x)e^{zx-x^2} dx$ for $z \in \mathbb{C}$ and use the fact that $g \equiv 0$ if and only if $\hat{g} \equiv 0$, where $\hat{g}(\xi) = \int_{\mathbb{R}} g(x)e^{-2\pi i x\xi} dx$.]