QUALIFYING EXAMINATION IN COMPLEX ANALYSIS
August 12, 2011, 9–11 a.m.

\(\mathbb{D} \) denotes the (open) unit disk, \(\overline{\mathbb{D}} \) the closed unit disk, and \(\mathbb{T} = \partial \mathbb{D} \) the unit circle. Provide justifications as appropriate.

1. (15 points) Use methods of complex analysis to evaluate

\[
\int_{0}^{\infty} \frac{\sqrt{x}}{(x + 1)^2} \, dx
\]

Be sure to provide complete justifications.

2. (15 points) Let \(c \) be a complex number such that \(|c| < 1/3 \). Show that on the open set \(\text{Re}(z) < 1 \) the function \(f(z) = ce^z \) has exactly one fixed point, i.e., a point \(z_0 \) such that \(f(z_0) = z_0 \).

3. (20 points) Let \(\overline{B}(a, r) \) denote the closed disk of radius \(r > 0 \) about a point \(a \in \mathbb{C} \). Let \(f \) be a holomorphic function on an open set containing \(\overline{B}(a, r) \), and let \(M = \sup_{z \in \overline{B}(a,r)} |f(z)| \). Prove that for \(z \in \overline{B}(a, r/2) \), \(z \neq a \), we have

\[
\frac{|f(z) - f(a)|}{|z-a|} \leq \frac{2M}{r}.
\]

4. (15 points) Suppose \(\Omega \subset \mathbb{C} \) is a region containing \(\mathbb{D} \) and \(f \) is holomorphic on \(\Omega \). Suppose that on \(\mathbb{D} \) we have \(f(z) = \sum a_n z^n \) and the series has radius of convergence equal to 1.
 a. Give an example of such an \(f \) so that the series converges at every point of \(\mathbb{T} \).
 b. Give an example of such an \(f \) that is analytic at \(z_0 \in \mathbb{T} \) and for which \(\sum a_n z_0^n \) diverges.
 c. Prove that \(f \) cannot be analytic at every point of \(\mathbb{T} \).

5. (20 points) Consider \(f(x, y) = x^2 - 2y + y^3 \). Let \(P = (1, 1) \).
 a. Let \(X = \{(x, y) \in \mathbb{R}^2 : f(x, y) = 0\} \). Prove that there is a neighborhood \(U \) of \(P \) so that \(U \cap X \) is given by \(y = \phi(x) \) for some \(C^1 \) function \(\phi \). Give \(\phi'(x) \).
 b. Now consider the same equation in \(\mathbb{C}^2 \) (i.e., \(Y = \{(x, y) \in \mathbb{C}^2 : f(x, y) = 0\} \)). Prove that the analogous statement holds. What is \(\phi'(x) \) as an \(\mathbb{R} \)-linear map from \(\mathbb{C} \) to \(\mathbb{C} \)? Why is \(\phi \) holomorphic? (Hint: If you consider \(g : \mathbb{C} \to \mathbb{C} \) as a map \(\tilde{g} : \mathbb{R}^2 \to \mathbb{R}^2 \), how is holomorphy of \(g \) characterized by \(D \tilde{g} \)?)

6. (15 points) Do either a or b.
 a. Suppose \(f \) is meromorphic on \(\mathbb{D} \), continuous on \(\overline{\mathbb{D}} \) except at finitely many points of \(\mathbb{D} \), and real on \(\mathbb{T} \). Prove that \(f \) is a rational function.
 b. Let \(\Omega \subset \mathbb{C} \) be the region inside the unit circle \(|z| = 1 \) and outside the circle \(|z - \frac{1}{4}| = \frac{1}{4} \). Find a one-to-one conformal map from \(\Omega \) onto an annulus \(r < |z| < 1 \) for the appropriate value of \(r \).