PHD PRELIMINARY EXAM IN COMPLEX ANALYSIS FALL 1991

Work any 6 problems. Do all parts unless otherwise indicated.

- 1. a) Show that if $f:\mathbb{C} \to \mathbb{C}$ is holomorphic at a, i.e. $\lim \{ f(z) f(a) \} / (z-a) \text{ exists, as } z \to a, \text{ then } f \text{ satisfies the Cauchy-Riemann equations at } a$.
- b) Assume $f:\mathbb{C}\to\mathbb{C}$ is differentiable at a in the "real sense", i.e. there is an \mathbb{R} -linear map $T:\mathbb{C}\to\mathbb{C}$ such that $\lim \{ f(z)-f(a) T(z-a) \} / |z-a| = 0$, as $z\to a$. Prove that if f satisfies the Cauchy Riemann equations at a, then the map T is also \mathbb{C} -linear.
- 2. a) Find the image of the region $\{0 \le Im(z) \le 2\}$ under the map w = (z+i) / (z-i), and show the images of the lines y = b for $0 \le b \le 2$.
- b) Find the image of the region $\{0 \le \text{Re}(z) \le \pi/2\}$ under the map $w = \sin(z)$, and indicate the image of the lines x = a for $0 \le a \le \pi/2$. [You might start by finding real and imaginary parts of $\sin(z)$.]
- 3. a) Assume $w = f(z) = \sum a_n(z-1)^n$, $n = 0,...,\infty$, is a power series with radius of convergence ρ = 1, and which can be continued analytically along every path γ beginning at z = 1 and lying in $U = \mathbb{C} \{0\}$. Ignoring points at infinity, tell how to construct (in theory) the Riemann surface X associated to f, as a possibly branched cover of an open set V in \mathbb{C} , and describe all the different possible such X's and V's that may result.
- OR b) Let $w = f(z) = 1 + \Sigma \, a_n z^n$, $n = 1, ..., \infty$, be the unique power series with $w^2 = 1 z^3$, and f(0) = 1. F determines a compact Riemann surface X which is a finite-sheeted branched cover of the Riemann sphere S. Determine (i): the number of sheets, (ii) the branch points on S, (iii) the topological structure of X, and (iv) the result of analytically continuing f around the curve γ beginning at the origin, going up the y axis to the point 2i, then once counterclockwise around the circle of radius 2, then back down to the origin.
- 4. a) If $f:U \to \mathbb{C}$ is an analytic function in an open, connected set U in \mathbb{C} , and if the zeroes of f have an accumulation point p in U, then prove f is constant in U.
- b) Give an example of a non constant function holomorphic in the open unit disc U, and having an infinite number of zeroes there, or prove this is impossible.
- 5. a) Assuming Cauchy's integral formula for the values of a holomorphic function, deduce that an entire holomorphic function is entire analytic (i.e. has an everywhere convergent power series expansion), and give Cauchy's formulas for the coefficients of the expansion.
 - b) Deduce Liouville's theorem that an entire, bounded, holomorphic function is constant.
- 6. Let ω_1 , ω_2 , be complex numbers with non real ratio. Prove the existence of a non constant meromorphic function on $\mathbb C$ with periods $\omega = n_1 \ \omega_1 + n_2 \ \omega_2$, for all integers n_1 , n_2 .

- 7. a) Let U be a simply-connected subset of ℂ, and let f:U→U be a holomorphic conformal isomorphism. Prove that if f has two fixed points, then f is the identity, or give a counterexample.
 - b) Prove any holomorphic injection f: €→€ is also a surjection or give a counterexample.
- 8. a) Prove that a \mathbb{C}^2 harmonic function $u: \mathbb{C} \to \mathbb{R}$ is the real part of an entire holomorphic function $f: \mathbb{U} \to \mathbb{C}$.
- b) Deduce the maximum modulus principle for harmonic functions from an appropriate theorem about holomorphic functions.