TOPOLOGY PRELIM April 1, 1996

- I. Show that $S^2 \times \mathbb{P}^3$ and $S^3 \times \mathbb{P}^2$ have the same universal cover and the same fundamental group, but that they are not homotopically equivalent.
- II. State and prove the Tietze extension theorem.
- III. Give an example of: (Of course you are to prove the example has the relevant properties)

1) A finite complex X with $\pi_1 X = \mathbb{Z}$, $H_2(X) = H_3(X) = \mathbb{Z}$, $H_n(X) = 0$ for n > 3.

- 2) A contractible subset of \mathbb{R}^2 that is not a retract of \mathbb{R}^2 .
- IV. State The Mayer-Victoris exact sequence theorem, and Van-Kampens theorem. Outline the proof of one of these.
- V. Let $\mathbb{R}P^3$ be the quotient of S^3 by the antipodal map. Give a cell decomposition of $\mathbb{R}P^3$ and compute its fundamental group and its homology groups. Is $\mathbb{R}P^3$ orientable?
- VI. Let $f(x) = \sin \frac{1}{x}$ for x > 0, and let S be the union of the graph of f and the segment $\{0,y\} | -1 \le y \le 1\}$.

Prove that S is connected, but not path connected.

VII. Prove: If A is a compact subset of the metric space X and \mathcal{U} in an open covering of A, then there is a $\delta > 0$ such that if $p \in A$, $N_{\delta}(p) \subset U$ for some $U \in \mathcal{U}$.