ALGEBRA QUALIFYING EXAM FALL 2024

(1) (12 points) Let G be a group and H, K subgroups of G. Recall that HK is defined as $HK = \{hk | h \in H, k \in K\}.$

(a) If K is normal in G prove that HK is a subgroup of G. (3 points)

(b)Give an example of a group G with subgroups H and K where HK is not normal (3 points)

(c)Suppose that G is finite, K is normal in G and P is a Sylow-p subgroup of K. Let $g \in G$. Prove that there is an element $k \in K$ such that $gk^{-1} \in N = N_G(P)$. (Recall that $N_G(P)$ is the normalizer of P in G.) (5 points)

(d)Let G, K, N be as in part (c). Prove that G = NK. (1 point)

(2) (12 points)(a)State and prove the Second Isomorphism Theorem for groups.You may assume the First Isomorphism Theorem. (Hint:The First Isomorphism Theorem relates the image of a homomorphism to a quotient group. The Second Isomorphism Theorem applies to a situation such as part (a) of the previous problem. It is sometimes called the Diamond Isomorphism Theorem because of the diamond shaped lattice of subgroups of G involved.) (6 points)

(b)Let $n \ge 5$. Use the Second Isomorphism Theorem for groups and the fact that A_n is simple to prove that the only nontrivial normal subgroup of S_n is A_n .(6 points)

(3) (12 points) Let R be a Principal Ideal Domain.

(a)Let $I_1 \subseteq I_2 \subseteq \cdots \subseteq R$ be an ascending chain of ideals in R. Prove that for some positive integer $n, I_k = I_n$ for all $k \ge n$ (6 points).

(b)Prove that every element in a R has a factorization into irreducibles. (6 points)

(4) (12 points) Let R be a commutative ring with 1. If I is an ideal in R and M is an R-module define IM to be the collection of elements consisting of all finite sums of the form $\sum a_i m_i$ where $a_i \in I$ and $m_i \in M$.

(a)Prove that IM is a submodule of M. (3 points)

(b) If I, J are ideals in R, define a map $\phi : M \to M/IM \times M/JM$ by $x \to (x + IM, x + JM)$. Prove that this map is a R-module homomorphism with kernel $IM \cap JM$. (3 points) (c) With the notation in (b), assume also that I + J = R. Prove that $M/(IJ)M \cong M/IM \times M/JM$. (6 points)

(5) (6 points) Let F be a field and let $f(x) \in F[x]$. Assume that F contains all the roots of f(x). Prove that all matrices with characteristic polynomial f(x) are similar if and only if f(x) has no repeated factors in its unique factorization in F[x].

(6) (10 points) Let F be a field.

(a)Use the fact that the polynomial ring F[x] has a Euclidean division algorithm to prove that every ideal in F[x] is principal. (5 points)

(b)Let E be an extension field of F and let $\alpha \in E$ be an element of E which is algebraic over F. Let $F[\alpha] = \{f(\alpha) | f(x) \in F[x]\}$. Assume that the evaluation map $\phi : F[x] \to F[\alpha]$ which maps $f(x) \to f(\alpha)$ is a homomorphism. Prove that $F[\alpha]$ is a field which is contained in every field containing α . You may assume that if f(x) is irreducible in F[x] that F[x]/(f(x)) is a field.(5 points)

(7) (16 points)In the following problem, for an extension field E of F, we will use the notation Aut(E/F) to denote the group of automorphisms of E which fix the elements of F (the Galois group of E over F).

Let $f(x) = x^4 - 2 \in \mathbb{Q}[x]$ and let $K = \mathbb{Q}(2^{1/4}, i)$.

(a)Prove that K is a splitting field for f(x). (1 point)

(b) Let G be the Galois group for f(x) over Q. Prove that there is an element of G, call it σ , which maps $2^{1/4} \rightarrow 2^{1/4}i, i \rightarrow i$, and an element of G, call it τ , which maps $2^{1/4} \rightarrow 2^{1/4}i, i \rightarrow -i$. (5 points)

(c)Identify the group G in (b). (4 points)

(d)(6 points)For the following intermediate fields, $\mathbb{Q} \subseteq E_i \subseteq K$, find their Galois groups $Aut(K/E_i)$ as subgroups of G. Determine which are Galois over \mathbb{Q} . For those which are Galois over \mathbb{Q} , identify $Aut(E_i/\mathbb{Q})$ as a quotient group of G. Justify your answers.

(1)
$$E_1 = \mathbb{Q}(2^{1/4}).$$

(ii) $E_2 = \mathbb{Q}(i).$
(iii) $E_3 = \mathbb{Q}(\sqrt{2}, i).$
(iv) $E_4 = \mathbb{Q}(\sqrt{2}).$
(v) $E_5 = \mathbb{Q}(2^{1/4}i).$

 $\mathbf{2}$