Final Exam Review - Integrals

Openstax Sections: 4.10, 5.1-5.7, 6.1.

Exercises

• Evaluate the integral:

1.
$$\int_{1}^{4} \frac{3t^2 - \sqrt{t}}{t} \, dt$$

$$5. \int \frac{x^3}{x^4 + 1} \, dx$$

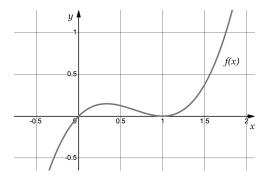
2.
$$\int_{-1}^{1} (3 - 6x^5) \, dx$$

6.
$$\int \sin x \cos(\cos x) \, dx$$

$$3. \int_0^1 (1-x)^5 \, dx$$

$$7. \int e^x \sqrt{1+e^x} \, dx$$

4.
$$\int_{0}^{1} \sin(2\pi x) dx$$


8.
$$\int \frac{\cos(\ln x)}{x} dx$$

• If f is continuous and $\int_0^4 f(x) dx = 6$, find $\int_0^2 f(2x) dx$.

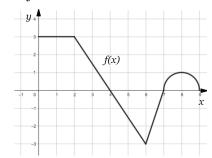
• Find $f(\theta)$ if $f''(\theta) = \sin \theta + \cos \theta$, f(0) = 1, and f'(0) = 2.

• Without computing, determine which of the integrals $\int_1^4 \sqrt{x} \, dx$ or $\int_1^4 \frac{1}{\sqrt{x}} \, dx$ has the larger value. Justify your answer.

• Given f, sketch the graph of its antiderivative F that passes through the point $(\frac{1}{2}, \frac{1}{2})$.

1

• Evaluate:


$$1. \ \frac{d}{dx} \int_0^1 e^{x^3} dx$$

3.
$$\int_0^1 \frac{d}{dx} e^{x^3} dx$$

$$2. \frac{d}{dx} \int_{e}^{x} e^{t^3} dt$$

4.
$$\frac{d}{dx} \int_{-\pi}^{x^2} e^{t^3} dt$$

- A miniature Christmas train moves back and forth along a straight track in a holiday display. Its velocity is v(t) (in feet per second) and its acceleration is a(t) (in feet per second squared), measured at time t seconds.
 - 1. What does the integral $\int_{10}^{30} v(t) dt$ represent in the context of the train's motion?
 - 2. What does the integral $\int_{10}^{30} |v(t)| dt$ represent?
 - 3. What does the integral $\int_{10}^{30} a(t) dt$ represent?
- Consider $\int_0^3 (2x+3) dx$.
 - 1. Estimate the above integral using Riemann sum with three subintervals, taking the sample points to be left endpoints.
 - 2. Write the above integral as a limit of Riemann sums, taking the sample points to be right endpoints and evaluate the sum.
 - 3. Check your answer using the Fundamental Theorem of Calculus.
- Determine the value of the integral $\int_1^2 (4f(x) 2x) dx$ given that $\int_{-1}^0 f(x) dx = 5$, $\int_{-1}^1 f(x) dx = 10$, and $\int_0^2 f(x) dx = 24$.
- Use the graph of a function *f* below to answer the following questions:

- 1. Evaluate $\int_0^9 f(x) dx$.
- 2. Find the area (not net area) bounded by the graph of f(x) and the x-axis on [0, 9].

2

- 3. If $F(t) = \int_0^t f(x) dx$, find F'(1).
- Find the area of the region bounded by:
 - 1. $y = \frac{1}{x}$, $y = x^2$, y = 0, x = e.
 - 2. x + y = 0, $x = y^2 + 3y$.