CALCULUS I REVIEW

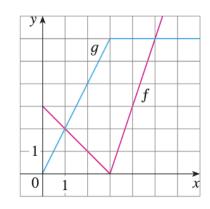
ENKA LAKURIQI

2. Derivatives

(1) Use the limit definition, no other method, to compute:

(a) y' of
$$y = \frac{1}{2x}$$

(b) y'(2) of $y = \sqrt{x-1}$


(2) Is the function

$$f(x) = \begin{cases} x^2, & \text{if } x \le 1\\ 2x - 1, & \text{if } x > 1 \end{cases}$$

differentiable at $x = 1$?

(3) Find y':
(a)
$$y = (x^2 + 1)^{2025}$$

(b) $y = \frac{\sqrt{x} + x^2 + 3}{x}$
(c) $y = x \arcsin(x)$
(d) $y = \ln \sec x$
(e) $y = \sin^2(\cos(\sin \pi x))$
(f) $xe^y = y \sin x$
(g) $y = 4^{x \ln x}$
(h) $y = \tan\left(\frac{x}{1 + x^2}\right)$
(i) $y = (\cos x)^x$
(j) $y = \frac{\sqrt{x + 1}(2 + x)^3}{(1 + x^2)^{10}}$

- (4) Find $y^{(2)}(0)$, the second derivative of y at x = 0, of $y = xe^x$.
- (5) We are given below the graphs of two functions f and g. Let $P(x) = f(g(x)), \quad Q(x) =$

 $(g(x))^2$, and $R(x) = x^2 g(x)$. Find P'(2), Q'(2) and R'(2).

- (6) Find an equation of the tangent line to the curve $y = e^x$ that passes through the origin.
- (7) Find the equation of the tangent line to the curve $x^2 + 4xy + y^2 =$ 13 at (2, 1).
- (8) Find slope of the tangent line to the inverse function y^{-1} of $y = x^3 + 2x - 8$ at x = 4.
- (9) Two points on the graph of

$$f(x) = x^3 - 3x^2 + 3x + 2025$$

are separated horizontally by 1 unit and have parallel tangents. Which of the two points is the largest point?