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Geometry of Selberg’s bisectors in the symmetric space
SL(n,R)/SO(n,R)
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Abstract

We study several problems about the symmetric space associated with the Lie group SL(n,R).
These problems are connected to an algorithm based on Poincaré’s Fundamental Polyhedron
Theorem, designed to determine generalized geometric finiteness properties for subgroups of
SL(n,R). The algorithm is analogous to the original one in hyperbolic spaces, while the
Riemannian distance is replaced by an SL(n,R)-invariant premetric.

The main results of this article are twofold. In the first part, we focus on questions that
occurred in generalizing Poincaré’s algorithm to our symmetric space. We describe and implement
an algorithm that computes the face-poset structure of finitely-sided polyhedra, and construct an
angle-like function between hyperplanes. In the second part, we study further questions related to
hyperplanes and Dirichlet-Selberg domains in our symmetric space. We establish several criteria
for the disjointness of hyperplanes and classify particular Abelian subgroups of SL(3,R) based
on whether their Dirichlet-Selberg domains are finitely-sided or not.

1. Introduction

1.1. Backgrounds

The space SL(n,R)/SO(n) studied in this paper is the Riemannian symmetric space
associated with the Lie group SL(n,R). As a symmetric space of non-compact type (An−1I)
in Cartan’s classification[9], we consider it a generalization of the hyperbolic space. Using the
Killing form on sl(n) and the Cartan decomposition of SL(n,R)[4], one describes the space
SL(n,R)/SO(n) as follows:

Definition 1. The hypersurface model of SL(n,R)/SO(n) is defined as the set

P(n) = Phyp(n) = {X ∈ Symn(R) | det(X) = 1, X > 0}, (1.1)

equipped with the metric tensor

⟨A,B⟩X = tr(X−1AX−1B), ∀A,B ∈ TXP(n).

Here, Symn(R) denotes the vector space of n× n real symmetric matrices, and X > 0 (or
X ≥ 0) means that X is positive definite (or positive semi-definite, respectively). Throughout
the paper, we consider the bilinear form ⟨A,B⟩ := tr(A ·B) on Symn(R) and interpret the
orthogonality accordingly.

The group SL(n,R) acts on P(n) as isometries via congruence transformations:

SL(n,R) ↷ P(n), g.X = gTXg.

We also introduce another model of P(n):
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Definition 2. The projective model of P(n) is defined as follows:

P(n) = Pproj(n) = {[X] ∈ P(Symn(R)) |X > 0}. (1.2)

It is evident that Pproj(n) and Phyp(n) are diffeomorphic. The standard Satake compactifi-
cation and Satake boundary of P(n) are defined through the projective model:

Definition 3. The standard Satake compactification of P(n) is the set

P(n)S = {[X] ∈ P(Symn(R)) |X ≥ 0},

and the Satake boundary of P(n) is the set

∂SP(n) = P(n)S\P(n).

We anticipate that many concepts and methodologies in hyperbolic spaces will have analogs
in the symmetric space P(n). Of particular interest is the generalization of Poincaré’s
Algorithm, initially proposed by Riley[19] for hyperbolic 3-space and extended by Epstein and
Petronio [6] for hyperbolic n-space, aimed at determining whether a subgroup of SO+(n, 1) is
geometrically finite.
Poincaré’s Algorithm typically involves constructing Dirichlet domains, which are convex

polytopes in hyperbolic space. However, Dirichlet domains in P(n) appear non-convex and
impractical for study. Hence, we adopt an SL(n,R)-invariant proposed by Selberg[21] as a
substitute of the Riemannian distance on P(n):

Definition 4. For X,Y ∈ P(n), the Selberg’s invariant from X to Y is defined as

s(X,Y ) = tr(X−1Y ).

Selberg’s invariant satisfies that s(X,Y ) ≥ n for any X,Y ∈ P(n), with equality if and only
if X = Y . Consequently, Selberg defines analogs of bisectors and Dirichlet domains:

Definition 5. The (Selberg’s) bisector of two points X,Y ∈ P(n) is defined as

Bis(X,Y ) = {Z ∈ P(n)|s(X,Z) = s(Y,Z)}.

The Dirichlet-Selberg domain for a discrete subgroup Γ < SL(n,R) centered at the point X ∈
P(n) is defined as

DS(X,Γ) = {Y ∈ P(n)|s(X,Y ) ≤ s(g.X, Y ), ∀g ∈ Γ}.

As in [11], Dirichlet-Selberg domains are also defined for discrete subsets of SL(n,R) for
computational purposes.

To comprehend the polyhedral nature of Dirichlet-Selberg domains, we generalize to P(n)
the concept of hyperbolic convex polyhedra. For instance, a d-plane in P(n) is defined as the
non-empty intersection of P(n) with a (d+ 1)-dimensional linear subspace of the vector space
Symn(R). Other notions such as hyperplanes, half-spaces, and convex polyhedra in P(n), along
with facets, ridges, and faces of a convex polyhedron P in P(n), can be defined analogously to
those in the hyperboloid model of hyperbolic spaces [18]. We denote the set of facets, ridges,
and faces of a convex polyhedron P by S(P ), R(P ) and F(P ), respectively. Additionally, we
denote by span(P ) the minimal plane in P(n) containing the convex polyhedron P .
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The group SL(n,R) acts on planes and convex polyhedra in P(n), enabling the definition
of fundamental polyhedra for subgroups of SL(n,R), exact convex polyhedra in P(n), facet
pairings for exact convex polyhedron P , and ridge cycles and the quotient space for a facet
pairing Φ, analogously to the hyperbolic case, [18]. Notably, Dirichlet-Selberg domains for
discrete subgroups of SL(n,R) serve as fundamental polyhedra for them:

Proposition 1.1 [11]. For a discrete subgroup Γ < SL(n,R) and a point X ∈ P(n), the
Dirichlet-Selberg domain DS(X,Γ) forms a convex polyhedron in P(n). Moreover, if StabΓ(X)
is trivial, DS(X,Γ) serves as a fundamental polyhedron for Γ.

With these notions established, we describe an analog of Poincaré’s Algorithm for SL(n,R):
Poincaré’s Algorithm (tentative). Suppose that we have a finite set of elements {g1, . . . , gn} ⊂

SL(n,R) and a point X ∈ P(n) as the center of Dirichlet-Selberg domains. The following
algorithm determines if the subgroup Γ generated by these elements admits a finitely-sided
Dirichlet-Selberg domain centered at X:

(1) Start with l = 1 and compute the finite subset Γl ⊂ Γ, consisting of elements represented
by words of length ≤ l in the letters of gi and g−1

i .
(2) Compute the face poset of the Dirichlet-Selberg domain DS(X,Γl), which is a finitely-

sided polyhedron in P(n).
(3) Utilizing this face poset data, check if DS(X,Γl) satisfies the following conditions:

(i) Verify if DS(X,Γl) is an exact convex polyhedron. Namely, for each w ∈ Γl,
ensure that the isometry w pairs the two facets contained in Bis(X,w.X) and
Bis(X,w−1.X) if they are non-empty.

(ii) Verify if DS(X,Γl) satisfies the tiling condition, i.e., if the quotient space M
obtained by identifying the paired facets of DS(X,Γl) is a P(n)-orbifold. We
consider formulating this with a “ridge cycle condition”.

(iii) Verify if the quotient space M is complete.
(iv) Verify if each element gi is generated by the facet pairings of DS(X,Γl), following

the method provided in [19].

(4) If any of these conditions are not satisfied, increment l by 1 and repeat the steps above.
(5) If these conditions are satisfied, Poincaré’s Fundamental Polyhedron Theorem and

Proposition 1.1 imply that DS(X,Γl) is a fundamental domain for Γ, analogously to
the hyperbolic case [18]. Consequently, Γ is a geometrically finite subgroup of SL(n,R).
Specifically, Γ is discrete, with a finite presentation derived from the ridge cycles of
DS(X,Γl).

This generalized Poincaré’s algorithm prompts several questions, motivating the results
discussed in this paper.

1.2. Preliminaries

Below we provide the essential preliminaries preceding presenting the main results of this
paper. We begin with introducing co-oriented hyperplanes:

Definition 6. The normal space of a non-zero matrix A ∈ Symn(R) is defined as

A⊥ = {X ∈ P(n) | tr(X ·A) = 0},

constituting a hyperplane in P(n) whenever non-empty. We designate A as a normal vector
of the hyperplane A⊥. A hyperplane associated with a normal vector is called a co-oriented
hyperplane.
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The normal vector of a hyperplane is unique up to a nonzero multiple. Identical co-oriented
hyperplanes with normal vectors that differ by a positive multiple are regarded as the same co-
oriented hyperplanes. Conversely, identical co-oriented hyperplanes with normal vectors that
differ by a negative multiple from each other are said to be oppositely oriented. If σ is a co-
oriented hyperplane given by A⊥, then the co-oriented hyperplane with the opposite orientation
is denoted by −σ or (−A)⊥.
We define a co-oriented hyperplane σ to lie between two co-oriented hyperplanes A⊥ and B⊥

if the normal vector associated with σ is a positive linear combination of A and B.

Some of our main results rely on matrix pencils:

Definition 7. A real (or complex) matrix pencil is a set {A− λB|λ ∈ R} (or λ ∈ C,
respectively), where A and B are real n× n matrices. We denote this matrix pencil by (A,B).
A matrix pencil (A,B) is regular if det(A− λB) ̸= 0 for at least one value λ ∈ C (equiva-

lently, for almost every λ). We say (A,B) is singular if both A and B are singular and A− λB
is singular for all λ ∈ C.

We define the generalized eigenvalues of a matrix pencil:

Definition 8. A generalized eigenvalue of a matrix pencil (A,B) is a number λ0 ∈ C such
that A− λ0B is singular.
For a regular pencil (A,B), the multiplicity of a generalized eigenvalue λ0 is the multiplicity

of the root λ = λ0 for the polynomial det(A− λB) over λ.
If B is singular, we adopt the convention that ∞ is a generalized eigenvalue of the pencil

(A,B) with multiplicity n− deg (det(A− λB)).
Notably, every λ ∈ C = C ∪ {∞} serves as a generalized eigenvalue of a singular matrix

pencil.

Furthermore, the SL(2,R)-action for a pair (A,B) of n× n matrices induces changes in the
generalized eigenvalues through a Möbius transformation:

Lemma 1.2. Let λ1, . . . , λn denote the generalized eigenvalues of the matrix pencil (A,B).
Then for any p, q, r, s ∈ R with ps− qr ̸= 0, the generalized eigenvalues of (pA+ qB, rA+ sB)
are given by λ′

i :=
pλi+q
rλi+s , i = 1, . . . , n.

A matrix pencil (A,B) is symmetric if both A and B are symmetric matrices. We define
definiteness for symmetric matrix pencils:

Definition 9. A symmetric matrix pencil (A,B) is (semi-) definite, if either A or B is
(semi-) definite, or if A− λB is (semi-) definite for at least one number λ ∈ R.

We define congruence transformations of symmetric matrix pencils as

(A,B) → (QTAQ,QTBQ),

where Q ∈ GL(n,R), and A,B ∈ Symn(R). It’s worth noting that generalized eigenvalues
remain invariant under these transformations.
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Our work utilizes a normal form of matrix pencils under congruence transformation. We
begin by introducing block-diagonal matrix pencils:

Definition 10. A block-diagonal matrix pencil is a matrix pencil (A,B), where A =
diag(A1, . . . , Am) and B = diag(B1, . . . , Bm); for i = 1, . . . ,m, Ai and Bi are square matrices
of the same dimension di.
The blocks of an n× n block-diagonal matrix pencil (A,B) define a partition of the set

{1, . . . , n}. We say the matrix pencil (A′, B′) is (strictly) finer than the matrix pencil (A,B) if
the partition corresponding to the pencil (A′, B′) is (strictly) finer than the one corresponding
to (A,B), up to a permutation of numbers 1, . . . , n.

Jordan canonical form characterizes the “finest” block-diagonalizations of regular symmetric
matrix pencils:

Lemma 1.3 [23]. Let (A,B) be a symmetric matrix pencil with B invertible. Suppose
that the Jordan canonical form of B−1A is Q−1B−1AQ = J = diag(J1, . . . , Jm), where Ji
is a Jordan block of dimension di, i = 1, . . . ,m. Then (A′, B′) = (QTAQ,QTBQ) is a block-
diagonal matrix pencil; the block (Ai, Bi) is of dimension di for i = 1, . . . ,m. Moreover, (A′, B′)
is finer than any matrix pencil in its congruence equivalence class.

Definition 11. For a regular symmetric matrix pencil (A,B), let c be any real number such
that B + cA is invertible, andQ−1(B + cA)−1AQ is the Jordan canonical form of (B + cA)−1A.
Define the normal form of (A,B) under congruence transformations as

(A′, B′) = (QTAQ,QTBQ).

Symmetricity of A′ and B′ together with the fact that A′ = JB′ implies the following, which
further characterizes the diagonal blocks of the pencil (A′, B′):

Lemma 1.4. In the notation of Lemma 1.3, let (Ai, Bi) be the diagonal blocks of the
congruence normal form (A′, B′) of the matrix pencil (A,B), i = 1, . . . ,m. Suppose that
Ai = (aj,ki )di

j,k=1 and Bi = (bj,ki )di

j,k=1. Then the entries aj,ki satisfy:

(i) aj,ki = aj
′,k′

i , for any j + k = j′ + k′,
(ii) aj,ki = 0, for any j + k ≤ di.

The entries bj,ki satisfy the same property.

2. Main Results

Our first result focuses on step (2) in Poincaré’s Algorithm. Following the sub-algorithm
proposed in [6] for hyperbolic spaces, we adopt the Blum-Shub-Smale (BSS) computational
model [3], where arbitrarily many real numbers can be stored, and rational functions over
real numbers can be computed in a single step. However, this sub-algorithm cannot be fully
extended to P(n) due to a fundamental distinction: while a hyperplane of Hn is isometric
to Hn−1, no analogous structure exists for P(n). To avoid this limitation, we introduce the
following lemma:
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Lemma 2.1. Let B1, . . . , Bl ∈ Symn(R) be linearly independent matrices, and that
span(B1, . . . , Bl) contains an invertible element. Then span(B1, . . . , Bl) contains a positive
definite element if and only if ∑

xi
0Bi > 0 (2.1)

holds for a real and isolated critical point (x1
0, . . . , x

l
0) of the homogeneous polynomial

P (x1, . . . , xl) = det(
∑

xiBi) restricted to the unit sphere Sl−1.

Utilizing Lemma 2.1, we devise a sub-algorithm to address step (2) in the proposed Poincaré’s
Algorithm for SL(n,R). Subsection 3.1 provides a detailed exposition of this sub-algorithm.

Our second result focuses on step (3) (ii) in Poincaré’s Algorithm. We aim to establish a ridge
cycle condition for convex polyhedra in P(n), analogously to similar conditions in hyperbolic
spaces[18]. However, in P(n), the Riemannian angle should be substituted with an angle-like
function satisfying specific natural properties [11]:

Definition 12. An invariant angle function θ(−,−) is a function defined on a subset of
the set of pairs of co-oriented hyperplanes (σ1, σ2) in P(n) with the following properties:

(i) For any co-oriented hyperplanes σ1 and σ2, 0 ≤ θ(σ1, σ2) ≤ π. Furthermore, θ(σ1, σ2) =
0 if and only if σ1 = σ2, while θ(σ1, σ2) = π if and only if σ1 = −σ2.

(ii) For any co-oriented hyperplanes σ1 and σ2 and any g ∈ SL(n,R), θ(g.σ1, g.σ2) =
θ(σ1, σ2).

(iii) For any co-oriented hyperplanes σ1 and σ2, θ(σ2, σ1) = θ(σ1, σ2), θ(−σ1, σ2) = π −
θ(σ1, σ2).

(iv) For any co-oriented hyperplane σ2 lying between σ1 and σ3, θ(σ1, σ2) + θ(σ2, σ3) =
θ(σ1, σ3).

We proceed to formulate the ridge cycle condition:

Definition 13. Let P be an exact convex polyhedron in P(n), with facet pairing Φ.
Assume that θ is an invariant angle function defined on all pairs of hyperplanes of P(n)
intersecting at a ridge of P . We say that P satisfies the ridge cycle condition if each ridge
cycle [x] of Φ satisfies the followings:

– The ridge cycle [x] is a finite set, [x] = {x1, . . . , xm}.
– The angle sum θ[x] =

∑m
i=1 θ(xi) = 2π/k for k ∈ N. Here, θ(xi) represents the invariant

angle θ of the two co-oriented hyperplanes spanned by the two facets of P containing xi.

We note that this ridge cycle condition does not depend on the choice of the invariant angle
function θ. For any exact convex polyhedron P in P(n), the ridge cycle condition is equivalent
to the tiling condition[11]. Indeed, let gi ∈ SL(n,R) be the facet pairing transformation that
takes xi to xi+1, and Ui be a sufficiently small neighborhood of xi in P for i = 1, . . . , n. Then,

the images Vi =
(∏i−1

j=1 gj

)−1

.Ui and Vi+1 share a facet. The ridge cycle condition for [x]

implies that the images V1,. . . , Vn tile a neighborhood of x1 in P , and vice versa.
We explicitly construct an invariant angle function for generic pairs of co-oriented

hyperplanes, as presented in the main theorem below.

Theorem 2.2. Let linearly independent symmetric matrices A and B be normal vectors of
co-oriented hyperplanes σ1 and σ2 in P(n), respectively. In addition, assume that the matrix
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pencil (A,B) is invertible. Denote the distinct generalized eigenvalues of (A,B) by λ1, . . . , λm.
Then:

(i) If there exists some nonreal numbers λ1, . . . , λk, λ
∗
1, . . . , λ

∗
k in the set of generalized

eigenvalues of (A,B), the following is an invariant angle function:

γ(σ1, σ2) =
1

k

k∑
i=1

|arg(λi)| . (2.2)

(ii) If all generalized eigenvalues of (A,B) are real (including ∞), ordered as λk > · · · > λ1,
and k ≥ 3, the following is an invariant angle function (realized as a limit if λk = ∞ is
a generalized eigenvalue):

γ(σ1, σ2) = arccos

∑k
i=1

λi+1+λi

λi+1−λi√(∑k
i=1

1
λi+1−λi

)(∑k
i=1

(λi+1+λi)2

λi+1−λi

) , (2.3)

where λk+1 = λ1.
(iii) If all eigenvalues are real and k ≤ 2, there is no invariant angle function defined on any

non-empty domain containing the full orbit of (σ1, σ2) for the SL(2,R)-action.

We present additional results concerning Dirichlet-Selberg domains and hyperplanes in P(n).
Among these results, we aim to determine whether two hyperplanes of SL(n,R)/SO(n) are
disjoint. Based on a result due to Finsler, [25], we prove the following:

Theorem 2.3. Hyperplanes A⊥ and B⊥ in P(n) are disjoint if and only if either of the
following holds, up to a congruence transformation of (A,B):

(i) The matrix pencil (A,B) is diagonal and semi-definite.
(ii) The matrix pencil (A,B) is block-diagonal, where the blocks are at most 2-dimensional.

Moreover, all blocks (Ai, Bi) of dimension 2 share the same generalized eigenvalue λ,
while A− λB is semi-definite.

An algorithm detailing the procedure for determining the disjointness of hyperplanes is
described in Subsection 3.3.
In addition, we establish a sufficient condition to ascertain if two Selberg bisectors Bis(X,Y )

and Bis(Y,Z) are disjoint, analogously to the hyperbolic case in [12]. First we consider maximal
flat totally geodesic submanifolds of P(n), which are isometric to the Euclidean (n− 1)-space.
In [14], one of these submanifolds is referred to as the model flat of P(n):

Fmod = {diag(x1, . . . , xn) |xi > 0,
∏

xi = 1}.

Moreover, for any distinct points X,Y ∈ P(n), there is an isometry g ∈ SL(n,R), such that
g.Y = I and g.X ∈ Fmod.
We divide the model flat into (2n − 2) chambers:

Definition 14. The model flat Fmod of P(n) is partitioned into (2n − 2) chambers denoted
by

∆I = {X = diag(xi) ∈ Fmod|0 < xi < 1, ∀i ∈ I; xi > 1, ∀i /∈ I}.

For any number t ∈ (0, 1), define

∆I
t =

{
X ∈ ∆I

∣∣∣∣min | log xi|
max | log xi|

≥ t

}
.
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∆I
t is a cone contained in the chamber ∆I and is away from the chamber boundary.

The sufficient condition is presented in the theorem below:

Theorem 2.4. Let X,Y, Z be points in P(n), and L = min(s(Y,X), s(Y,Z)). Let gX and
gZ ∈ SL(n,R) be elements such that

gX .Y = gZ .Y = I, gX .X ∈ Fmod, gZ .Z ∈ Fmod.

Define θ as the maximum angle between the i-th column vector of g−1
X gZ and the i-th standard

unit vector for i = 1, . . . , n.
Suppose that there exists t ∈ (0, 1) and a subset I ⊂ {1, . . . , n} such that the points gX .X ∈

∆I
t , gZ .Z ∈ ∆Ic

t , and

1 +
√
n− 2 sin θ

cos θ −
√
n− 2 sin θ

≤
√
t ·
(
L− 1

n− 1

)t/2

. (2.4)

Then the bisectors Bis(X,Y ) and Bis(Y,Z) in P(n) are disjoint.

We also investigate whether a subgroup of SL(n,R) admits a finitely-sided Dirichlet-Selberg
domain for a generic choice of center. This property, examined by Poincaré’s Algorithm, implies
the geometric finiteness, though the reverse is not always true. In particular, we categorize
discrete Abelian subgroups of SL(3,R) with exclusively positive eigenvalues based on whether
their Dirichlet-Selberg domains are finitely-sided. We begin by exhausting all cases of such
subgroups:

Proposition 2.5. Let Γ be a discrete Abelian subgroup of SL(3,R) where all eigenvalues of
each γ ∈ Γ are positive real numbers. Then, Γ is conjugate to a subgroup of SL(3,R) generated
by either of the following:
(i) For cyclic Γ, the generators are displayed below:

Type (1) (2) (3) (4) (5)

Generator

1 1 0
0 1 0
0 0 1

 1 1 0
0 1 1
0 0 1

 er 0 0
0 es 0
0 0 et


(r + s+ t = 0;
r, s, t ̸= 0)

es 0 0
0 e−s 0
0 0 1


(s ̸= 0)

et 1 0
0 et 0
0 0 e−2t


(t ̸= 0)

(ii) For 2-generated Γ, the generators are displayed below:

Type (1) (2) (3) (4) (5)

Generators

1 1 0
0 1 0
0 0 1


1 0 1
0 1 0
0 0 1



1 0 0
0 1 1
0 0 1


1 0 1
0 1 0
0 0 1



1 1 0
0 1 1
0 0 1


1 a b
0 1 a
0 0 1


(b ̸= a(a− 1)/2)

er 0 0
0 es 0
0 0 et


er

′
0 0

0 es
′

0

0 0 et
′


(r + s+ t =

r′ + s′ + t′ = 0)

et 1 0
0 et 0
0 0 e−2t


es a 0

0 es 0
0 0 e−2s


((s, t) ̸= (0, 0))

The proof of Proposition 2.5 is elementary and is left to the reader. Our classification
regarding the finite-sidedness of Dirichlet-Selberg domains is presented below.
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Theorem 2.6. Let Γ be a discrete and free Abelian subgroup of SL(3,R), generated by
matrices with exclusively positive eigenvalues.

– If Γ is a cyclic group of type (1), (3), or (5), or if it is a 2-generated group of type (1) or
(4), the Dirichlet-Selberg domain DS(X,Γ) is finitely-sided for all X ∈ P(3).

– If Γ is a cyclic group of type (2) or (4), or if it is a 2-generated group of type (2), (3)
or (5), the Dirichlet-Selberg domain DS(X,Γ) is infinitely-sided for all X in a dense and
Zariski open subset of P(3).

Utilizing Dirichlet-Selberg domains in P(n), we extend the notion of Schottky groups[17] to
subgroups of SL(n,R):

Definition 15. A discrete subgroup Γ < SL(n,R) is called a Schottky group of rank k if
there exists a point X ∈ P(n) such that the Dirichlet-Selberg domain DS(X,Γ) is 2k-sided
and ridge-free.

Schottky groups in SL(n,R) are free subgroups of SL(n,R), analogously to the original
notion in hyperbolic spaces. Our research investigates the existence of such groups among
subgroups of SL(n,R):

Definition 16. For any A ∈ SL(n,R) with only positive eigenvalues, one defines the
attracting and repulsing subspaces of Rn as follows:

C+
A = spanλi>1(vi), C−

A = span0<λj<1(vj),

where vi denotes the eigenvector of AT associated with the eigenvalue λi, i = 1, . . . , n.

Theorem 2.7.

(i) Suppose that n is even, and A1, . . . , Ak ∈ SL(n,R) are such that the attracting and
repulsing spaces C±

Ai
, i = 1, . . . , k, are all n/2-dimensional and pairwise transversal.

Then there exists an integer M > 0 such that the group Γ = ⟨AM
1 , . . . , AM

k ⟩ is a Schottky
group of rank k.

(ii) Suppose that n is odd, and A1, . . . , Ak ∈ SL(n,R) generate a Schottky group and serve
as the facet-pairing transformations. Then for at least one generator Ai, one of its
eigenvalues λ satisfies that |λ| = 1.

3. Proof of the main results

This section aims to prove the main results presented in Section 2 and demonstrate the
connection of these results with the proposed Poincaré’s Algorithm.

3.1. Proof of Lemma 2.1, and description of step (2) in Poincaré’s Algorithm

We begin with the proof of Lemma 2.1:

Proof. The “if” part is self-evident. To prove the “only if” part, we assume that X ′ =∑
x′iBi is a positive definite element in span(B1, . . . , Bl), where (x′i) := x′ ∈ Rl is a unit

vector. This is consistent with the lemma assumption.
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We first show the existence of a critical point of P |Sl−1 satisfying (2.1). Let Σ be the connected
component of Sl−1\{P (x1, . . . , xl) = 0} containing x′. The region Σ contains a local maximum
point x0 of P |Sl−1 , which is the desired critical point.
We proceed to show that the critical point x0 is isolated. Suppose the opposite that x0 is

contained in an algebraic variety S with dimension ≥ 1, consisting of critical points of P |Sl−1 .
By replacing x0 with another point in S, we assume that x0 is a regular point, contained in a
smooth curve of critical points, with an expansion:

x(t) = x0 + ty0 + t2z0 +O(t3), |t| < ϵ,

where ϵ > 0 and y0 ̸= 0.

Since the curve x lies in the unit sphere, both y0 and z0 + ||y0||2
2 x0 lie in Tx0S

l−1. As x0 is
a critical point, the vanishing of the derivative of P along these directions implies that

tr(X−1
0 Y0) = 0, tr(X−1

0 Z0) = −||y0||2

2
tr(X−1

0 X0) = −n

2
||y0||2,

where X(t) =
∑

xi(t)Bi, X0 =
∑

xi
0Bi, Y0 =

∑
yi0Bi, and Z0 =

∑
zi0Bi.

On the other hand, det(X(t)) = P (x(t)) ≡ P (x0) = det(X0), implying that:

n∑
i=1

λi = 0,
∑

1≤i<j≤n

λiλj +

n∑
i=1

µi = 0,

where λi and µi, i = 1, . . . , n, are the eigenvalues of X−1
0 Y0 and X−1

0 Z0, respectively, as real
numbers. Combining the equations above, we obtain that

0 ≤
n∑

i=1

λ2
i = (

n∑
i=1

λi)
2 − 2(

∑
i<j

λiλj) = 2

n∑
i=1

µi = 2tr(X−1
0 Z0) = −n

l∑
i=1

||y0||2 < 0,

which leads to a contradiction.

Utilizing Lemma 2.1, we can describe the following algorithm in the BSS model:

Corollary 3.1. There is a numerical algorithm with an input consisting of matrices
A1, . . . , Al ∈ Symn(R), yielding the following outcomes:

– If the intersection
⋂l

i=1 A
⊥
i = ∅, the algorithm outputs false.

– If
⋂l

i=1 A
⊥
i is non-empty, the algorithm outputs true and provides a sample point in⋂l

i=1 A
⊥
i .

Proof. Given the input A1, . . . , Al ∈ Symn(R), we compute a basis of the orthogonal
complement of span(A1, . . . , Al) in Symn(R), denoted by {B1, . . . , Bl′}. Then,

l⋂
i=1

A⊥
i = span(B1, . . . , Bl′) ∩ P(n).

If P (x1, . . . , xl′) = det(
∑

xiBi) ≡ 0, then
⋂l

i=1 A
⊥
i is empty. Otherwise, P (x1, . . . , xl′) is a

homogeneous polynomial of degree n in variables x1, . . . , xl′ . The restriction of the polyno-
mial P (x1, . . . , xl′)|Sl′−1 has finitely many isolated critical points, found by numerical BSS
algorithms, e.g., [1].
Let x1, . . . ,xm denote these isolated critical points, where xj = (x1

j , . . . , x
l′

j ). By Lemma 2.1,

we determine if
⋂n−l

i=1 A
⊥
i is empty and generate a sample point of it by verifying if

∑
xi
jBi is

positive definite for a certain j ∈ {1, . . . ,m}. The algorithm we described terminates within a
finite number of steps.
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Below, we describe step (ii) in Poincaré’s Algorithm, utilizing Corollary 3.1 and referring to
the algorithm for hyperbolic spaces described in [6].
Algorithm for Computing the Poset Structure of Polyhedra in P(n). Consider a point

X ∈ P(n) and a list A′ of matrices A′
i, where i = 1, . . . , k′. Define the half-spaces Hi = {Y ∈

P(n)|tr(A′
i · Y ) ≥ 0} and the convex polyhedron Pl =

⋂l
i=1 Hi, l = 1, . . . , k′. We aim to describe

an algorithm computing the face poset structure of Pk′ consisting of the following data:
– A subset A = {A1, . . . , Ak} of the input set A′.
– A two-dimensional array Lface comprised of numbers from the set {1, . . . , k′}, describing
the set {F1, . . . , Fm} of faces of Pk′ . Specifically, Lface is a 2D array {Lface

1 , . . . , Lface
m },

where m = |F(Pk′)|, and such that

span(Fj) =
⋂

i∈Lface
j

Ai, j = 1, . . . ,m.

– A two-dimensional array Lpos comprised of numbers from the set {1, . . . ,m}, describing
the inclusion relation among the faces of Pk′ , namely

Lpos
j = {1 ≤ i ≤ m|Fi ⊊ Fj}, j = 1, . . . ,m.

– An array Lsamp of elements in P(n), serving to describe sample points associated with
the faces of Pk′ :

Lsamp
j ∈ Fj , j = 1, . . . ,m.

Step (1). We aim to inductively obtain these data for each Pl, l = 0, . . . , k′, and begin with
l = 0. Since the polyhedron P0 is the entire space P(n), we initialize

Lface = {∅}, Lpos = {∅}, Lsamp = {X}, and A = ∅.

Step (2). We increase l by 1. Assume we have a set A of n× n symmetric matrices, such that
Pl−1 =

⋂
A∈A{tr(A · Y ) ≥ 0}, as well as lists by Lface, Lpos, and Lsamp for Pl−1 as described

above. We describe the computation of these data of Pl = Pl−1 ∩Hl from which of Pl−1.
Step (3). To begin with, we remove the first element of the list A′, denoted by Al, and

append it to A.
Step (4). For any face F ∈ F(Pl−1), exactly one of the following relative positions holds for

the pair (F,Hl) [6]:
(1) The face F ⊂ ∂Hl.
(2) The face F ⊂ int(Hl).
(3) The face F ⊂ Hl, F ∩ ∂Hl ̸= ∅, and F ∩ int(Hl) ̸= ∅.
(4) The face F ∩Hl = ∅.
(5) The face F ∩ int(Hl) = ∅, F ∩ ∂Hl ̸= ∅, and F ∩Hc

l ̸= ∅.
(6) The face F ∩ int(Hl) ̸= ∅ and F ∩Hc

l ̸= ∅.

For i = 1, . . . , 6, we denote F (i)
Hl

(Pl−1) as the set of faces F ∈ F(Pl−1) such that (F,Hl) belongs
to relative position (i). We create a list Ltemp of length |F(Pl−1)| to represent the relative
positions for these, initializing by {0, . . . , 0}. We aim to replace the element Ltemp

j with a
number from {1, . . . , 6} indicating the relative position of (Fj , Hl), where Fj ∈ F(Pl−1).
Step (5). We first determine the relative positions of the minimal faces in F(Pl−1), i.e., the

faces Fj such that Lpos
j = ∅, which are planes in P(n). These can be ascertained by checking if

Fj ∩Hl = ∅ and computing tr(AlXj), where Xj = Lsamp
j is a sample point of Fj , with the sub-

algorithm described in Corollary 3.1. We can thus determine whether (Fj , Hl) is in positions
(1), (2), (4), or (6).
Step (6). We determine the relative position of non-minimal faces Fj , giving the relative

positions of all proper faces of Fj . This is analogous to the corresponding step in [6].
Step (7). Utilizing the list Ltemp, we derive data Lface for Pl, also analogously to [6]. Namely,

the set of faces F(Pl) consists of:
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– Faces F ∈ F (1)
Hl

(Pl−1) ∪ F (2)
Hl

(Pl−1) ∪ F (3)
Hl

(Pl−1), and

– Intersections F ∩Hl and F ∩ ∂Hl, where F ∈ F (6)
Hl

(Pl−1).

Step (8). We derive the data Lpos for Pl as follows. For F ∈ F (1)
Hl

(Pl−1) ∪ F (2)
Hl

(Pl−1) ∪
F (3)

Hl
(Pl−1), the set of its proper faces in F(Pl) remains unchanged. For F ∈ F (6)

Hl
(Pl−1), the

proper faces of F ∩Hl include:

– Proper faces F ′ of F , where F ′ ∈ F (1)
Hl

(Pl−1) ∪ F (2)
Hl

(Pl−1) ∪ F (3)
Hl

(Pl−1),

– Intersections F ′ ∩Hl and F ′ ∩ ∂Hl, where F ′ ∈ F (6)
Hl

(Pl−1) is a proper face of F , and
– The intersection F ∩ ∂Hl.

For F ∈ F (6)
Hl

(Pl−1), the proper faces of F ∩ ∂Hl include:

– Proper faces F ′ of F where F ′ ∈ F (1)
Hl

(Pl−1), and

– Intersections F ′ ∩ ∂Hl, where F ′ ∈ F (6)
Hl

(Pl−1) is a proper face of F .
Step (9). We derive the data Lsamp for Pl, i.e., the sample points of faces Fj ∩Hl and

Fj ∩ ∂Hl for Fj ∈ F (6)
Hl

(Pl−1).
If Fj ∩ ∂Hl is a minimal face, its sample point is given by Corollary 3.1. If it has at least two

proper faces, the sample point is given as the barycenter of the sample points of these proper
faces, utilizing the data Lpos. If it has exactly one proper face, the sample point is given by
perturbing the sample point of its proper face, similarly to [6].

The sample point of Fj ∩Hl is derived by perturbing which of Fj ∩ ∂Hl, analogously to [6].
Step (10). We check if all numbers in {1, . . . , l} appear in Lface as facets. If a number

i ∈ {1, . . . , l} does not appear, we remove Ai from the list {A1, . . . , Al}, decrease by 1 any
numbers greater than i appearing in Lface, and decrease l by 1.
Step (11). Repeat steps (2) through (10) if A′ is non-empty. If A′ is empty, the algorithm

terminates, and the data A, Lface, Lpos and Lsamp are the required output of the algorithm.

3.2. Proof of Theorem 2.2

Recall the three types of regular matrix pencils mentioned in Theorem 2.2:
– Case (i): Some generalized eigenvalues of (A,B) are nonreal.
– Case (ii): The pencil (A,B) possesses at least three (distinct) generalized eigenvalues, all
of which are real or infinity.

– Case (iii): The pencil (A,B) possesses at most two generalized eigenvalues, all real or
infinity.

We say that a given pair of co-oriented hyperplanes (A⊥, B⊥) in P(n) is of type (i), (ii), or
(iii) if the pencil (A,B) corresponds to case (i), (ii), or (iii) above, respectively. By Lemma 1.2,
it is evident that the hyperplane pairs (σ1, σ2) and (g.σ1, g.σ2) share the same type for any
g ∈ SL(n,R). Furthermore, if σ3 lies between σ1 and σ2, both (σ1, σ3) and (σ2, σ3) belong to
the same type as (σ1, σ2). Consequently, we can independently prove the three statements in
Theorem 2.2.
Case (i). We aim to prove that the function

θ(σ1, σ2) =
1

k

k∑
i=1

|arg(λi)|

defined for all pairs (σ1, σ2) of type (i) satisfies the properties listed in Definition 12. Here,
λ1, . . . , λk and their conjugates are the nonreal generalized eigenvalues of (A,B).

Proof of Theorem 2.2 (Case (i)). First, we establish the well-definedness of the function in
equation (2.2). According to Lemma 1.2, the nonreal generalized eigenvalues of (c1A, c2B) are
c2
c1
λi and

c2
c1
λ∗
i , for any c1, c2 > 0. Since these have the same arguments as λi and λ∗

i , the value

θ((c1A)⊥, (c2B)⊥) = θ(A⊥, B⊥), i.e., the expression (2.2) remains unchanged. Furthermore,
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the arguments of λi and λ∗
i are opposite, ensuring that the expression (2.2) remains invariant

when replacing λi with λ∗
i .

Next, we verify properties (i) to (iv) in Definition 12 for the function θ defined by (2.2).
Property (i) is self-evident. For property (ii), we notice that the pencil ((g−1)T.A, (g−1)T.B)
for hyperplanes g.σ1 and g.σ2 shares the same generalized eigenvalues as (A,B).
To verify property (iii), note that the pencil (B,A) possesses generalized eigenvalues λ−1

i and
λ−1∗
i , which have opposite arguments as λi and λ∗

i , respectively. Furthermore, the generalized
eigenvalues of (−A,B) are −λi and −λ∗

i , while | arg(−λi)| = π − | arg(λi)|.
Lastly, we verify property (iv). Since positive rescalings of A and B preserve the values of

θ(A⊥, C⊥), θ(C⊥, A⊥) and θ(A⊥, B⊥), we assume that C = A+B. Lemma 1.2 shows that
the nonreal generalized eigenvalues of (A,C) are (1 + λi) and (1 + λ∗

i ), while the nonreal

generalized eigenvalues of (C,B) are λi

1+λi
and

λ∗
i

1+λ∗
i
, where i = 1, . . . , k. Thus, property (iv)

holds due to the product law of arguments.
Therefore, the function θ defined by (2.2) serves as an invariant angle function.

Case (ii). We aim to prove that the function

θ(σ1, σ2) = arccos

∑k
i=1

λi+1+λi

λi+1−λi√(∑k
i=1

1
λi+1−λi

)(∑k
i=1

(λi+1+λi)2

λi+1−λi

) .
defined for all pairs (σ1, σ2) of type (ii) satisfies the properties listed in Definition 12. For
clarity, we introduce the notation

t(x1, . . . , xk) =

∑k
i=1

xi+1+xi

xi+1−xi√(∑k
i=1

1
xi+1−xi

)(∑k
i=1

(xi+1+xi)2

xi+1−xi

) ,
for any real numbers x1, . . . , xk, and t>(x1, . . . , xk) = t(xσk

, . . . , xσ1), where {σ1, . . . , σk}
represents the permutation of {1, . . . , k} such that xσk

≥ · · · ≥ xσ1
.

We start with a lemma concerning the compositions of t> and Möbius transformations:

Lemma 3.2. Let φ be a Möbius transformation on R = R ∪ {∞}, and let λk > · · · > λ1

represent real numbers. If φ is orientation-preserving, then

t>(φ(λ1), . . . , φ(λk)) = t(φ(λ1), . . . , φ(λk)). (3.1)

If φ is orientation-reversing, then

t>(φ(λ1), . . . , φ(λk)) = −t(φ(λ1), . . . , φ(λk)). (3.2)

The proof of Lemma 3.2 is straightforward. We also require the following lemma:

Lemma 3.3. For any real λk > · · · > λ1,∑
i ̸=j

(λi+1 + λi − λj+1 − λj)
2

(λi+1 − λi)(λj+1 − λj)
> 0,

k∑
i=1

(2 + λi+1 + λi)
2

λi+1 − λi
> 0.

Lemma 3.3 is elementary.
We resume the proof of Theorem 2.2.
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Proof of Theorem 2.2 (Case (ii)). Property (i) in Definition 12 demands us to show that
(2.3) always yields values between 0 and π, i.e., −1 < t(λ1, . . . , λk) < 1 for any real numbers
λk > · · · > λ1. Utilizing the Cauchy-Binet identity [24], we have:(

k∑
i=1

1

λi+1 − λi

)(
k∑

i=1

(λi+1 + λi)
2

λi+1 − λi

)
−

(
k∑

i=1

λi+1 + λi

λi+1 − λi

)2

=
1

2

∑
i̸=j

(λi+1 + λi − λj+1 − λj)
2

(λi+1 − λi)(λj+1 − λj)
.

From Lemma 3.3, we deduce that the right-hand side is positive.
We proceed to prove the other properties. Property (ii) is proved similarly to the

corresponding arguments in the preceding case.
For property (iii), note that the generalized eigenvalues of (B,A) are λ−1

i , which result from
an orientation-reversing Möbius transformation of λi, i = 1, . . . , k. Lemma 3.2 implies that:

cos θ(σ2, σ1) = t>(λ
−1
1 , . . . , λ−1

k ) = −t(λ−1
1 , . . . , λ−1

k ),

and the summations in the expression of t(λ−1
1 , . . . , λ−1

k ) simplify to:

k∑
i=1

1

λ−1
i − λ−1

i+1

=

k∑
i=1

(
1

λ−1
i − λ−1

i+1

+
λi+1 − λi

4

)
=

k∑
i=1

(λi+1 + λi)
2/4

λi+1 − λi
,

k∑
i=1

(λ−1
i + λ−1

i+1)
2

λ−1
i − λ−1

i+1

=

k∑
i=1

(
(λ−1

i + λ−1
i+1)

2

λ−1
i − λ−1

i+1

+ (λ−1
i+1 − λ−1

i )

)
=

k∑
i=1

4

λi+1 − λi
,

k∑
i=1

λ−1
i + λ−1

i+1

λ−1
i − λ−1

i+1

=

k∑
i=1

λi+1 + λi

λi+1 − λi
.

This proves the former part of property (iii). For the latter part, note that the generalized
eigenvalues of (−A,B) are −λ1 > · · · > −λk.
Lastly, we address property (iv). Setting θ = θ(σ1, σ2), θ1 = θ(σ1, σ3) and θ2 = θ(σ3, σ2),

property (iv) reduces to

cos(θ) = cos(θ1 + θ2) = cos(θ1) cos(θ2)− sin(θ1) sin(θ2). (∗)

Similarly to the the preceding case, we assume that σ3 = (A+B)⊥ without loss of generality.
The generalized eigenvalues of (A,A+B) are (1 + λi) and (1 + λ∗

i ), and the generalized

eigenvalues of (A+B,B) are λi

1+λi
and

λ∗
i

1+λ∗
i
, i = 1, . . . , k. Both sets are orientation-preserving

Möbius transformations of λi and λ∗
i , i = 1, . . . , k. Lemma 3.2 implies that

cos(θ1) =

∑k
i=1

2+λi+1+λi

λi+1−λi√(∑k
i=1

1
λi+1−λi

)(∑k
i=1

(2+λi+1+λi)2

λi+1−λi

) .
The summations in the expression of cos(θ2) are simplified to

k∑
i=1

(
λi+1 + λi + 2λiλi+1

λi+1 − λi
− λi − λi+1

2

)
=

1

2

k∑
i=1

(2 + λi + λi+1)(λi+1 + λi)

λi+1 − λi
,

k∑
i=1

(
(1 + λi)(1 + λi+1)

λi+1 − λi
− λi − λi+1

4

)
=

1

4

k∑
i=1

(2 + λi + λi+1)
2

λi+1 − λi
,

k∑
i=1

(
(λi+1 + λi + 2λiλi+1)

2

(1 + λi)(1 + λi+1)(λi+1 − λi)
− λ2

i

1 + λi
+

λ2
i+1

1 + λi+1

)
=

k∑
i=1

(λi+1 + λi)
2

λi+1 − λi
.
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Thus, Lemma 3.2 also implies that

cos(θ2) =

∑k
i=1

(2+λi+λi+1)(λi+1+λi)
λi+1−λi√(∑k

i=1
(2+λi+λi+1)2

λi+1−λi

)(∑k
i=1

(λi+1+λi)2

λi+1−λi

) .
By applying the Cauchy-Binet identity, we have:

sin(θ1) =

√(∑k
i=1

1
λi+1−λi

)(∑k
i=1

(2+λi+1+λi)2

λi+1−λi

)
−
(∑k

i=1
2+λi+1+λi

λi+1−λi

)2
√(∑k

i=1
1

λi+1−λi

)(∑k
i=1

(2+λi+1+λi)2

λi+1−λi

)
=

√
1
2

∑
i ̸=j

(λi+1+λi−λj+1−λj)2

(λi+1−λi)(λj+1−λj)√(∑k
i=1

1
λi+1−λi

)(∑k
i=1

(2+λi+1+λi)2

λi+1−λi

) ,
and

sin(θ2) =

√(∑k
i=1

(2+λi+λi+1)2

λi+1−λi

)(∑k
i=1

(λi+1+λi)2

λi+1−λi

)
−
(∑k

i=1
(2+λi+λi+1)(λi+1+λi)

λi+1−λi

)2
√(∑k

i=1
(2+λi+λi+1)2

λi+1−λi

)(∑k
i=1

(λi+1+λi)2

λi+1−λi

)
=

√
1
2

∑
i ̸=j

4(λi+1+λi−λj+1−λj)2

(λi+1−λi)(λj+1−λj)√(∑k
i=1

(2+λi+λi+1)2

λi+1−λi

)(∑k
i=1

(λi+1+λi)2

λi+1−λi

) .
Inequalities in Lemma 3.3 imply that

sin(θ1) sin(θ2) =

1
2

∑
i̸=j

2(λi+1+λi−λj+1−λj)
2

(λi+1−λi)(λj+1−λj)(∑k
i=1

(2+λi+1+λi)2

λi+1−λi

)√(∑k
i=1

1
λi+1−λi

)(∑k
i=1

(λi+1+λi)2

λi+1−λi

) .
By combining the equations above and using the Cauchy-Binet identity again, we have

cos(θ1) cos(θ2)− sin(θ1) sin(θ2)

=

(∑k
i=1

2+λi+1+λi

λi+1−λi

)(∑k
i=1

(2+λi+λi+1)(λi+1+λi)
λi+1−λi

)
− 1

2

∑
i̸=j

2(λi+1+λi−λj+1−λj)
2

(λi+1−λi)(λj+1−λj)(∑k
i=1

(2+λi+1+λi)2

λi+1−λi

)√(∑k
i=1

1
λi+1−λi

)(∑k
i=1

(λi+1+λi)2

λi+1−λi

)
=

(∑n
i=1

λi+1+λi

λi+1−λi

)(∑n
i=1

(2+λi+1+λi)
2

λi+1−λi

)
(∑k

i=1
(2+λi+1+λi)2

λi+1−λi

)√(∑k
i=1

1
λi+1−λi

)(∑k
i=1

(λi+1+λi)2

λi+1−λi

) = cos(θ).

This proves property (iv) in Definition 12. Therefore, the function θ given by (2.3) is an
invariant angle function.

Case (iii). To prove statement (3) in Theorem 2.2, we begin by establishing the following
lemma:
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Lemma 3.4. Let Kl =
∑

s+t=r+l es ⊗ et, l = 1, . . . , r, be r × r matrices. Define that

X =

r∑
l=1

xlKl, X̄ =

r−1∑
l=1

xlKl+1.

Then for any s > 0 and t ∈ R, there exists an element g ∈ GL+(r,R) satisfying the conditions:

g.X̄ = X̄, (3.3)

g.X = sX + tX̄. (3.4)

Proof. We claim the existence of a matrix g of the form

g =
∑
l≤j

sr/2−j+1p
(j−l)
l el ⊗ ej (3.5)

that satisfies (3.3) and (3.4).
If g follows equation (3.5), the entries above the anti-diagonal of both equations and those

on the anti-diagonal of (3.3) vanish. We will prove by induction on k that there exist numbers

p
(k)
l ∈ R, where l = 1, . . . , r − k, such that all entries under the anti-diagonal of both equations

and those on the anti-diagonal of (3.4) equal on both sides.

We start with the base case k = 0. If we set p
(0)
l = 1 for l = 1, . . . , r, then the (l + 1, r + 2− l)

entries of both sides of (3.3) are equal to x1, and the (l + 1, r + 1− l) entries of both sides of

(3.4) are equal to sx1, where l = 1, . . . , r − 1. Entries above these depend on p
(1)
l and do not

need to be discussed here.
We proceed to the general case k > 0, assuming that the solutions p

(k′)
l are determined

for 0 ≤ k′ < k. The (l + k, r + 2− l) entries of (3.3), where l = 2, . . . , r − k, yield (r − k − 1)

equations in unknowns p
(k)
1 , . . . , p

(k)
r−k; the symmetricity of g.X̄ reduces the number of equations

to ⌊ r−k
2 ⌋. The (l + k, r + 1− l) entries of (3.4), where l = 1, . . . , r − k, yield (r − k) equations

in unknowns p
(k)
1 , . . . , p

(k)
r−k, and the symmetricity of g.X reduces the number of equations to

⌊ r−k+1
2 ⌋. Combining these equations yields a system of (r − k) linear equations, which is upper-

triangular if the (r − k) unknowns are arranged as p
(k)
1 , p

(k)
r−k, p

(k)
2 , . . . , p

(k)

⌊ r−k
2 +1⌋. Thus, a unique

solution p
(k)
1 , . . . , p

(k)
r−k exists, dependent on s, t, x1, . . . , xk+1 and p

(k′)
j , where 1 ≤ j ≤ r − k′

and k′ < k.
By induction, a solution set p

(k)
l exists in terms of x1, . . . , xr, s, and t, where k = 1, . . . , r − 1

and l = 1, . . . , r − k. Thus, there exists a matrix g satisfying (3.3) and (3.4).

Lemma 3.4 implies the following:

Lemma 3.5. (1) Suppose that (A,B) is a regular pencil of symmetric n× n matrices with
only one distinct eigenvalue λ ∈ R, and let C = A− λB. Then, for any s > 0 and t ∈ R, there
exists an element g ∈ GL+(n,R) such that:

g.C = C, g.B = sB + tC.

(2) Suppose that (A,B) is a regular pencil of symmetric n× n matrices with only two distinct
eigenvalues λ, λ′ ∈ R, and let C = A− λB, C ′ = A− λ′B. Then for any s, s′ > 0, there exists
an element g ∈ GL+(n,R) such that:

g.C = sC, g.C ′ = s′C ′.
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Proof. (1) Suppose that the pencil (A,B) has one distinct eigenvalue λ ∈ R. According to
Lemma 1.3, we may assume that the matrix pencil is in the normal form:

A = diag(A1, . . . , Ak),

and

B = diag(B1, . . . , Bk),

where Aj = BjJλ,rj , and Jλ,rj denotes the Jordan block of dimension rj and eigenvalue λ.

Let B̃j = Bj − λAj = BjJ0,rj . According to Lemma 3.4, for any s > 0 and t ∈ R, there exist
elements gj ∈ GL+(rj ,R) such that:

gj .B̃j = B̃j , gj .Bj = sBj + tB̃j .

Let g = diag(g1, . . . , gk) ∈ GL+(n,R), then g.C = C and g.B = sB + tC.
(2) Suppose that the pencil (A,B) has exactly two distinct eigenvalues λ, λ′ ∈ R. We may

assume that the matrix pencil is in the normal form:

A = diag(A1, . . . , Ak, A
′
1, . . . , A

′
l),

and

B = diag(B1, . . . , Bk, B
′
1, . . . , B

′
l),

where Aj = BjJλ,rj and A′
j = B′

jJλ′,r′j
. Let B̃j = BjJ0,rj and B̃′

j = B′
jJ0,r′j . According to

Lemma 3.4, for any s, t > 0, there exist matrices gj , j = 1, . . . , k, such that

gj .B̃j = B̃j , gj .Bj =
t

s
Bj +

t− s

s(λ− λ′)
B̃j ,

and matrices g′j , j = 1, . . . , l, such that

g′j .B̃
′
j = B̃′

j , gj .B
′
j =

s

t
B′

j +
s− t

t(λ′ − λ)
B̃′

j .

Let g = diag(
√
sg1, . . . ,

√
sgk,

√
tg′1, . . . ,

√
tg′l) ∈ GL+(n,R), then g.C = sC and g.C ′ = tC ′.

We now return to part (iii) of Theorem 2.2.

Proof of Theorem 2.2 (Case (iii)). A positive rescaling of the normal vector does not change
the associated co-oriented hyperplane. Therefore, we may replace the part “g ∈ SL(n,R)” in
Definition 12 with “g ∈ GL+(n,R)”.
(1) Suppose that (A,B) has only one eigenvalue λ ∈ R and C = A− λB. By replacing (A,B)

with an element in its SL(2,R)-orbit, we may assume λ > 0. By Lemma 3.5, there is an element
g ∈ GL+(n,R), such that g.C = C and g.B = λB + C = A. Denote σk = (g1−k.A)⊥, which is
compatible with the notations σ1 = A⊥ and σ2 = B⊥. Then,

θ(σk, σk+1) = θ((g1−k.A)⊥, (g1−k.B)⊥) = θ(A⊥, B⊥) = θ(σ1, σ2).

One verifies that

(λk − 1)g1−k.A = (λk − λ)g−k.A+ (λ− 1)A,

i.e., θk lies between θ1 and θk+1. Property (iv) of invariant angle functions implies that

θ(σ1, σm) =

m−1∑
k=1

θ(σk, σk+1) = (m− 1)θ(σ1, σ2)

for any m > 1, greater than π for m sufficiently large, a contradiction.
(2) Suppose that (A,B) has two eigenvalues λ and λ′, C = A− λB, and C ′ = A− λ′B. By

replacing (A,B) with an element in its SL(2,R)-orbit, we may assume λ > λ′ > 0. Lemma 3.5
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implies the existence of an element g ∈ GL+(n,R) such that g.A = B, g.C differs from C by
a positive multiple, and g.C ′ differs from C ′ by a positive multiple. Denote σk = (g1−k.A)⊥,
k ∈ N; we verify that σk lies between σ1 and σk+1 for all k > 1. Similarly to part (1), the value
of θ(σ1, σm) exceeds π for m large enough, leading to a contradiction.
In conclusion, for all symmetric matrix pencils (A,B) of type (iii), there are no invariant

angle functions defined on its entire SL(2,R)-orbit.

3.3. Proof of Theorem 2.3, and the algorithm determining disjoint hyperplanes

We will prove Theorem 2.3 in this section, which describes an equivalent condition for that
two hyperplanes in P(n) are disjoint. We begin by reviewing a result of Finsler [25], providing
an equivalent condition for

⋂
i∈I σi ̸= ∅, where I is a finite set.

We introduce Σ as the collection of the hyperplanes σi for i ∈ I. Moreover, A denotes the
collection of the corresponding normal vectors Ai, which are symmetric matrices. We define
the definiteness of a collection of symmetric n× n matrices:

Definition 17. We say the collection A = {Ai ∈ Symn(R)|i ∈ I} is (semi-) definite if
there exist numbers ci ∈ R for i ∈ I such that

A =
∑
i∈I

ciAi

is a non-zero positive (semi-) definite matrix.

Further, we introduce notation related to the Satake compactification P(n) ⊂ P(Symn(R)):

Definition 18. For A ∈ Symn(R), define

N(A) = {X ∈ P(Symn(R))|tr(A ·X) = 0},

and define A⊥ = P(n) ∩N(A).

The relationship between the definiteness of A = Ai and the emptiness of the intersection⋂
A⊥

i is described by the following lemma:

Lemma 3.6 (cf. [25]). The collection A = {Ai}ki=1 of n× n symmetric matrices is semi-
definite if and only if the intersection

⋂k
i=1 A

⊥
i is empty. Furthermore, A is (strictly) definite

if and only if
⋂

A⊥
i = ∅.

Proof. The proof for the case of k = 1 is straightforward, achieved by applying an SL(n,R)-
action and assuming that A is diagonal. To extend the proof to general k ∈ N, one notices
the following: if

⋂
A⊥

i is empty, then the subspace
⋂
N(Ai) ⊂ P(Sym(n)) is disjoint from

the closed convex region P(n) ⊂ P(Sym(n)). Therefore, there exists a support hyperplane
N(B) ⊂ P(Sym(n)) such that

⋂
N(Ai) ⊆ N(B) and N(B) ∩ P(n) = ∅.

To continue proving Theorem 2.3, we first examine the case where (A,B) is a regular pencil.
Case (1). Assume that (A,B) constitutes a regular pencil. If two hyperplanes A⊥ and B⊥

are disjoint, we have the following supplement to Lemma 3.6:
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Lemma 3.7. If two hyperplanes A⊥ and B⊥ in P(n) are disjoint and (A,B) is regular,
then all generalized eigenvalues of (A,B) are real numbers.

The proof of Lemma 3.7 relies on certain algebraic results:

Lemma 3.8. Let t0 be a real generalized eigenvalue of a symmetric n× n matrix pencil
(A,B). We define a continuous function λ(t) in a neighborhood of t = t0 such that λ(t) is an
eigenvalue of A−Bt and λ(t0) = 0.
Then, in a neighborhood of t = t0, the function λ(t) can be expressed as a product:

λ(t) = (t− t0)
sφ(t),

where s ∈ N+ and φ(t) is a continuous function with φ(t0) ̸= 0.

Proof. Around (λ, t) = (0, t0), λ(t) has a Puiseux series expansion (see, e.g., [2]) with
fractional exponents of denominator d. If d ≥ 2, then some of the eigenvalues are not real in a
punctured neighborhood of t = t0, leading to a contradiction. Hence d = 1, and the conclusion
follows.

Proof of Lemma 3.7. First, we assume that A⊥ and B⊥ are disjoint, indicating that the
pencil (A,B) is (strictly) definite. By applying an SL(2,R)-action on (A,B), we assume that
B is positive definite, without altering the conclusion as per Lemma 1.2. Suppose that the
polynomial det(A− tB) has distinct real zeroes ti of multiplicity ri, where i = 1, . . . , k. For
each i, there is a neighborhood Ui ⊃ ti, on which the eigenvalues of (A− tB) are smooth
functions λj(t) of t, j = 1, . . . , n.
Suppose the signature of A− λiB changes by 2k at t = ti, i.e., k eigenvalues among λj(t),

j = 1, . . . , n, change the sign at t = ti. Lemma 3.8 implies that the determinant

det(A− tB) =

n∏
j=1

λj(t),

a polynomial in t, has a factor (t− ti)
k. That is, the zero ti of det(A− tB) is of multiplicity at

least k. Since B is positive definite, the signature of (A− tB) increases by 2n from −M to M
for a sufficient large M < ∞, implying that (A− tB) has at least n real zeroes between −M
and M (counting multiplicity). Consequently, all generalized eigenvalues of (A,B) are real.

Next, we assume that A⊥ and B⊥ are disjoint, indicating that (A,B) is semi-definite. We
demonstrate that that all generalized eigenvalues of (A,B) are real by considering a sequence
{(Ai, Bi)}∞i=1 of strictly definite matrix pencils approximating (A,B).

We proceed with the proof of Theorem 2.3:

Proof of Theorem 2.3 (regular case). The “if” part is straightforward. For the “only if”
part, we assume that B is invertible. Furthermore, we consider that (A,B) is a real block-
diagonal matrix pencil, B−1A is a real matrix in Jordan normal form, with Jordan blocks of
the same dimensions as the block-diagonal pencil (A,B).
Suppose that (A,B) contains a block (Ai, Bi) of dimension di ≥ 3. Utilizing Lemma 1.4, it’s

evident that all elements in (Ai, Bi) are indefinite, implying that (Ai, Bi) is is an indefinite
pencil, a contradiction.
Now suppose that (A,B) contains a block (Aj , Bj) of dimension 2. Similar reasoning via

Lemma 1.4 suggests that Aj − λBj is the only possible semi-definite element, where λ is the
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generalized eigenvalue of (Aj , Bj). Consequently, all blocks of dimension 2 share the same
eigenvalue λ.
Lastly, if (A,B) is diagonal, hyperplanes A⊥ and B⊥ are disjoint if and only if (A,B) is

semi-definite.

Case (2). Consider now the case where (A,B) is a singular pencil. If the pencil (A,B) arises
from a lower-dimensional pencil, we have the following lemma:

Lemma 3.9. Suppose that A0, B0 ∈ Symm(R) and A = diag(A0, O), B = diag(B0, O) ∈
Symn(R). Then A⊥ ∩B⊥ = ∅ if and only if A⊥

0 ∩B⊥
0 = ∅ (in P(m)).

The proof of the Lemma is evident.
Additionally, we will utilize the following result:

Lemma 3.10 [10]. Let (A,B) be a singular symmetric n× n matrix pencil. Then (A,B) is
congruent to (A′, B′), where the matrices A′ and B′ satisfy

A′ =

A1 O O
O O O
O O O

 , B′ =

B1 B2 O
BT

2 O O
O O B3

 ,

for n1 × n1 matrices A1 and B1, an n1 × n2 matrix B2, and an n3 × n3 matrix B3, where
n1 + n2 + n3 = n. Moreover, A1 and B3 are invertible.

We proceed with the proof of Theorem 2.3:

Proof of Theorem 2.3 (singular case). The ”if” part is clear. For the “only if” part, from
Lemma 3.10, we observe that (A,B) is congruent to both:

PTAP =

A1 O O
O O O
O O O

 , PTBP =

B1 B2 O
BT

2 O O
O O B3

 , (3.6)

and

P ′TAP ′ =

A′
1 A′

2 O
A′T

2 O O
O O A3

 , P ′TBP ′ =

B′
1 O O

O O O
O O O

 , (3.7)

where A1, B3, A
′
3 and B′

1 are invertible.
If both A′

2 and B2 are nonzero, we construct a positive definite matrix orthogonal to A and
B as follows. The nonzero A′

2 implies that A is indefinite, so is A1. According to Lemma 3.6,
there is a positive definite matrix X1 perpendicular to A1. As B2 ̸= O, there is a matrix X2

such that

2tr(X2 ·BT
2 ) + tr(X1 ·B1) + tr(B3) = 0.

Since X1 is positive definite, there exists a positive definite matrix X4, such that(
X1 X2

XT
2 X4

)
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is positive definite. Hence,

X := P ·

X1 X2 O
XT

2 X4 O
O O I

 · PT ∈ A⊥ ∩B⊥.

Therefore, A⊥ and B⊥ are disjoint only if either A′
2 = O or B2 = O. Without loss of generality,

suppose that B2 = O, then (A,B) is congruent to (diag(A0, On−m),diag(B0, On−m)), where
(A0, B0) := (diag(A1, O),diag(B1, B3)) is an invertible pencil of dimension m. Applying
Theorem 2.3 (regular case) to (A0, B0), we conclude that (A,B) satisfies either condition (i)
or (ii).

Derived from Theorem 2.3, we describe an algorithm that checks if two hyperplanes A⊥ and
B⊥ are disjoint:
Algorithm for certifying disjointness of two hyperplanes. For given normal vectors A,B ∈

Symn(R) of hyperplanes in P(n), we follow these steps to ascertain if A⊥ ∩B⊥ = ∅:

(1) Determine if (A,B) is regular by computing the coefficients of det(A− tB).
(2) If (A,B) is regular, assume that A is invertible without loss of generality. Compute the

Jordan normal form of A−1B = PJP−1 using the standard algorithm.
(3) If any Jordan block of J has dimension ≥ 3, then A⊥ and B⊥ are not disjoint.
(4) Otherwise, compute A0 = PTAP and B0 = PTBP . If J has blocks of dimension 2, check

if all these blocks share the same eigenvalue λ and if the diagonal matrix A0 − λB0 is
semi-definite. This condition holds if and only if A⊥ ∩B⊥ = ∅.

(5) If J is diagonal, check if the diagonal matrices A0 and B0 have a positive semi-definite
linear combination. This condition holds if and only if A⊥ ∩B⊥ = ∅.

(6) If (A,B) is singular, compute the standard form of (A,B) as in equations (3.6) and (3.7)
following the algorithm described in [10].

(7) In the standard form mentioned above, if both matrices B2 and A′
2 are nonzero, then

A⊥ and B⊥ are not disjoint.
(8) Otherwise, assume that B2 = O, let A0 = diag(A1, O) and B0 = diag(B1, B3). Check if

A⊥
0 ∩B⊥

0 = ∅ by performing steps (2) to (5). This is equivalent to that A⊥ ∩B⊥ = ∅.

3.4. Proof of Theorem 2.4

We prove Theorem 2.4 after a few lemmas:

Lemma 3.11. Let X = diag(xi) ∈ ∆I
t and s(I,X) ≥ L, L ≥ n. Then for any i ∈ I and

j ∈ Ic,

|x−1
i − 1|

|x−1
j − 1|

≥ t ·
(
L− 1

n− 1

)t

.

Proof. The Lemma’s assumption implies the existence of u > 0 such that xi ∈ [e−u, e−tu]
for i ∈ I, and xi ∈ [etu, eu] for i ∈ Ic. Suppose that |I| = k, 1 ≤ k ≤ n− 1. We deduce that

L ≤
∑

xi ≤ ke−tu + (n− k)eu ≤ k + (n− k)eu,

thus eu ≥ (L− k)/(n− k) ≥ (L− 1)/(n− 1). It follows that

|x−1
i − 1|

|x−1
j − 1|

≥ etu − 1

1− e−u
≥ tetu ≥ t ·

(
L− 1

n− 1

)t

,

for any i ∈ I and j ∈ Ic.
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The two lemmas below are self-evident:

Lemma 3.12. Suppose that g =

(
g1 g2
g3 g4

)
∈ SO(n), where g1 ∈ Matk(R). Then, g =

g+g
−1
− , where

g+ =

(
(g−1

1 )T −(g−1
1 )TgT3

O I

)
, g− =

(
I O

−g−1
4 g3 g−1

4

)
.

Lemma 3.13. Define

σr(A) = max
i

n∑
j=1

|aij |, σc(A) = max
j

n∑
i=1

|aij |

for a matrix A = (aij) ∈ Matn(R). If there exist elements A,B ∈ Matn(R) such that σr(A) ≤ a
and σr(B) ≤ b, then σr(AB) ≤ ab. A similar conclusion holds for σc.

Utilizing Lemma 3.13, we have the following result:

Lemma 3.14. Consider a matrix A = (aij) ∈ Matn(R), where aii ≥ a and
∑

j ̸=i |aij | ≤ a′

for all i = 1, . . . , n, and a > a′ are real numbers. Then A is invertible, with σr(A
−1) ≤ 1

a−a′ .
A similar conclusion holds for σc.

Proof. This follows directly from Lemma 3.13, with noticing that

A−1 = A1A
−1
2 = A1

∞∑
k=0

(I −A2)
k,

where

A1 = diag(a−1
ii ), A2 = (aij/aii)

n
i,j=1.

We turn to the proof of Theorem 2.4.

Proof of Theorem 2.4. By applying the SL(n,R)-action, we can assume that Y = I, X
is diagonal, and I = {k + 1, . . . , n}, where 1 ≤ k < n. Let g = gZ = (gij) ∈ SO(n), expressed

as g =

(
g1 g2
g3 g4

)
, where g1 ∈ Matk(R). Let g+, g− be matrices described in Lemma 3.12,

corresponding to the blocks g1 through g4 and satisfying g = g+g
−1
− . Since g.I = I, it follows

that g−.I = g+.I. Denote that X0 = X and Z0 = g.Z, both being diagonal matrices. Then,
(g−1

+ )T.Z = (g−1
− )T.Z0. Our goal is to show that the images of Bis(X,Y ) and Bis(Y,Z) under

the (g−1
+ )T action are disjoint, which can be expressed as:

(g+.(X
−1
0 − I))⊥ ∩ (g−.(Z

−1
0 − I))⊥ = ∅. (*)

For X0 = diag(xi) and Z0 = diag(zi), Lemma 3.11 implies that for any i ≤ k and j > k,

|x−1
j − 1|

|x−1
i − 1|

≥ t ·
(
L− 1

n− 1

)t

,
|z−1

i − 1|
|z−1

j − 1|
≥ t ·

(
L− 1

n− 1

)t

.
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Thus, there exist positive constants cx and cz such that for any i ≤ k and j > k,

cx(x
−1
j − 1) ≥ t ·

(
L− 1

n− 1

)t

, −1 ≤ cx(x
−1
i − 1) < 0.

cz(z
−1
i − 1) ≥ t ·

(
L− 1

n− 1

)t

, −1 ≤ cz(z
−1
j − 1) < 0.

(3.8)

Denote

h = (hij) = diag(Ik, O)g+ + diag(O, In−k)g−,

then

h =

(
(g−1

1 )T −(g−1
1 )TgT3

−g−1
4 g3 g−1

4

)
,

and h is decomposed as h = h−1
a hb, where

ha =

(
gT1 O
O g4

)
, hb =

(
I −gT3

−g3 I

)
.

As gX is assumed to be the identity matrix, the angle between ei and the i-th column vector of
gZ is at most θ, which implies that the diagonal elements of ha are no less than cos θ. Moreover,∑

j ̸=i,j≤k

|gij | ≤
√
(k − 1)

∑
j ̸=i,j≤k

g2ij ≤
√

(k − 1) sin θ ≤
√

(n− 2) sin θ,

thus σr(hb), σc(hb) ≤ 1 +
√
n− 2 sin θ. By Lemma 3.13 and 3.14, we deduce that

σr(h), σc(h) ≤
1 +

√
n− 2 sin θ

cos θ −
√
n− 2 sin θ

.

We establish the condition (*) by proving the positive definiteness of the linear combination cx ·
g+.(X

−1
0 − I) + cz · g−.(Z−1

0 − I). Let cx · g+.(X−1
0 − I) = (ξij) and cz · g−.(Z−1

0 − I) = (ζij).
For i ≤ k, we have the following inequalities:

ξii =
∑
l≤k

h2
li(x

−1
l − 1) ≥ −

∑
l≤k

h2
li,∑

j ̸=i

|ξij | ≤
∑

j ̸=i, l≤k

|hli||hlj ||x−1
l − 1| ≤

∑
j ̸=i, l≤k

|hli||hlj |,

ζii = (z−1
i − 1) +

∑
l>k

h2
li(z

−1
l − 1) ≥ t((L− 1)/(n− 1))t −

∑
l>k

h2
li,∑

j ̸=i

|ζij | ≤
∑

j ̸=i, l>k

|hli||hlj ||z−1
l − 1| ≤

∑
j ̸=i, l>k

|hli||hlj |.

Hence,

ξii + ζii ≥ t((L− 1)/(n− 1))t −
n∑

l=1

h2
li ≥

(
1 +

√
n− 2 sin θ

cos θ −
√
n− 2 sin θ

)2

−
n∑

l=1

h2
li

= σr(h)σc(h)−
n∑

l=1

h2
li ≥

n∑
l=1

σr(h)|hli| −
n∑

l=1

h2
li ≥

∑
l,j

|hlj ||hli| −
n∑

l=1

h2
li

=
∑

j ̸=i,1≤l≤n

|hli||hlj | ≥
∑
j ̸=i

|ξij + ζij |.

For i > k, the inequality ξii + ζii ≥
∑

j ̸=i |ξij + ζij | holds analogously. This implies that

cx · g+.(X−1
0 − I) + cz · g−.(Z−1

0 − I) is diagonally dominant and hence positive definite.
Therefore, the condition (*) holds, implying that Bis(X,Y ) and Bis(Y, Z) are disjoint.
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3.5. Proof of Theorem 2.6

Let Γ be a discrete subgroup of SL(3,R) and let X ∈ P(3). A facet of the Dirichlet-Selberg
domain D = DS(X,Γ) lies in the bisector Bis(X, γ.X) for a certain γ ∈ Γ. We denote such a
facet by Fγ . The existence of such facets is characterized by the following lemma:

Lemma 3.15. Let Γ be a discrete subgroup of SL(n,R). Suppose that there exists a smooth
function g : Rm → SL(n,R) such that Γ = g(Λ), where Λ is a discrete subset of Rm, 0 ∈ Λ,
and g(0) = e. For A,X ∈ P(n), define a function sgX,A : Rm → R, sgX,A(k) = s(g(k).X,A).

Then for any k0 ∈ Λ\{0}, the facet Fg(k0) of DS(X,Γ) exists if and only if there exists a
matrix A ∈ P(n) such that 0 and k0 are the only minimum points of sgX,A|Λ.

Proof. The existence of the facet Fg(k0) is equivalent to the existence of an interior point
A of the facet. Moreover, sgX,A for this interior point A satisfies the lemma requirements, and
vice versa.

Remark 1. Lemma 3.15 provides insights into the nature of Dirichlet-Selberg domains.
Given X ∈ P(n) and Γ < SL(n,R), the lemma implies the following:

– If for all but finitely many points k ∈ Λ and for every A ∈ P(n), the function sgX,A|Λ cannot
be minimum at both k and 0, the Dirichlet-Selberg domain DS(X,Γ) is finitely-sided.

– If there are infinitely many points k ∈ Λ such that k and 0 are the only two minimum points
of sgX,A|Λ for a certain A ∈ P(n), the Dirichlet-Selberg domainDS(X,Γ) is infinitely-sided.

We present a generalization of Lemma 3.15:

Corollary 3.16. Let Γ, g, Λ and sgX,A be as defined in Lemma 3.15. Suppose that there
exists a matrix A ∈ P(n) and a finite subset Λ0 ⊂ Λ satisfying the following conditions:

(i) The point 0 ∈ Λ0.
(ii) There exists a nonzero point k0 ∈ Λ0 such that sgX,A(k0) = sgX,A(0).
(iii) For any k ∈ Λ0, s

g
X,A(k) ≤ sgX,A(0); for any k ∈ Λ\Λ0, s

g
X,A(k) > sgX,A(0).

Then the Dirichlet-Selberg domain DS(X,Γ) has a facet Fg(k) for at least one element k ∈
Λ0\{0}.

Proof. Let Λ0 = {0,k0,k1, . . . ,kr}, where the elements are ordered as

sgX,A(k0) ≥ sgX,A(k1) ≥ · · · ≥ sgX,A(kr).

Define

Λ′
i := (Λ\Λ0) ∪ {0,k0, . . . ,ki}, i = 0, . . . , r.

The following statement is evident by induction on i, utilizing Lemma 3.15:

(*) The Dirichlet-Selberg domain DS(X, g(Λ′
i)) contains a facet Fg(kj) for a certain j ∈

{0, . . . , i}.
When i = r, (*) concludes this corollary.

The proof of Theorem 2.6 comprises a series of assertions, divided into finitely-sided and
infinitely-sided parts. For clarity, we consistently denote the (i, j) entry of X−1 and A by xij

and aij , respectively. We denote the generator of cyclic groups by γ, and the two generators of
2-generated groups by γ1 and γ2, as listed in Proposition 2.5.



GEOMETRY OF SELBERG’S BISECTORS Page 25 of 31

Proof of Theorem 2.6 for finitely-sided cases.
Cyclic group of type (1). We interpret the group Γ = ⟨γ⟩ as the image of Z under the function

g(k) = γk, ∀k ∈ R. The function sgX,A described in Lemma 3.15 becomes a quadratic polynomial
with a positive leading coefficient:

sgX,A(k) = x11a22k
2 + 2(x11a12 + x12a22 + x13a23)k + const.

Thus, if sgX,A|Z attains its minimum at k = 0, the other possible minimum point is either
k = −1 or k = 1. The remark following Lemma 3.15 implies that DS(X,Γ) is two-sided for any
X ∈ P(3).
Cyclic group of type (3). Similarly, we interpret the group Γ = ⟨γ⟩ as a one-parameter family,

g(k) = γk = diag(erk, esk, etk), where r + s+ t = 0, and r, s, t ̸= 0. Without loss of generality,
we assume that r ≥ s > 0 > t. The function sgX,A described in Lemma 3.15 becomes:

sgX,A(k) = x11a11e
−2rk + x22a22e

−2sk + x33a33e
−2tk + 2x23a23e

rk + 2x13a13e
sk + 2x12a12e

tk.

Since xii and aii > 0 for i = 1, 2, 3, there exists a unique kc ∈ R such that√
x11a11e

−rkc +
√

x22a22e
−skc =

√
x33a33e

−tkc .

Hence, sgX,A(k) = c · f(k − kc), where

f(k) = e2(r+s)k + 2pα13e
sk + 2(1− p)α23e

rk + p2e−2rk + (1− p)2e−2sk + 2p(1− p)α12e
−(r+s)k,

and

c = x33a33e
−2tkc > 0, p =

√
x11a11e

−rkc

√
x33a33e−tkc

∈ (0, 1), αij =
xijaij√

xiixjjaiiajj
,

with |αij | < ξ := maxi ̸=j
|xij |√
xiixjj

< 1.

For any (p, α12, α13, α23) ∈ [0, 1]× [−ξ, ξ]3, there exists N > 0 such that

f ′(n; p, αij) > 0, ∀n > N ; f ′(n; p, αij) < 0, ∀n < −N.

This is shown by considering the cases p = 0, p = 1, and 0 < p < 1 separately; for either case,
the leading terms as k → ∞ and k → −∞ have positive coefficients.
Thus, the minimum points of f lie between −N and N . The compactness of the region

implies that N exists uniformly for all tuples (p, α12, α13, α23) ∈ [0, 1]× [−ξ, ξ]3. Consequently,
if k = 0 and k = k0 are the only minimum points of sgX,A|Z, then |k0| < 2(N + 1). Lemma 3.15
implies that DS(X,Γ) is finitely-sided for any X ∈ P(3).
Cyclic group of type (5). Similarly, we interpret the group Γ = ⟨γ⟩ as a one-parameter family,

g(k) = γk, and the function sgX,A becomes

sgX,A(k) = x33a33e
4sk + (2x13a13 + 2x23a23 − 2ke−sx23a13)e

sk

+ (x11a11 + x22a22 + 2x12a12 − 2ke−s(x12a11 + x22a12) + k2e−2sx22a11)e
−2sk,

where s ̸= 0; assume that s > 0 without loss of generality. Similarly to the preceding case, we
can interpret sgX,A(k) = c · f(k − kc) for a certain kc ∈ R, where

f(n) = e4sn + (2α13p+ 2α23q − 2β3(1− p− q)n)esn

+ (p2 + q2 + 2α12pq − 2(β1p+ β2q)(1− p− q)n+ (1− p− q)2n2)e−2sn,

with p, q > 0, p+ q < 1, |αij |, |β1|, |β3| < ξ and |β2| < 1, all dependent on xij , aij , s, and kc.
Similarly to the preceding case, the compactness of the region {(p, q)|p, q ≥ 0, p+ q ≤ 1} ×

[−ξ, ξ]5 × [−1, 1] implies the existence of a number N > 0, such that |k0| < 2(N + 1) if k = 0
and k = k0 are the only minimum points of sgX,A|Z. Lemma 3.15 implies that DS(X,Γ) is
finitely-sided for any X ∈ P(3).
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Two-generated group of type (1). We interpret the group Γ as a two-parameter family,
g(k, l) = γk

1γ
l
2, k, l ∈ Z. Computation suggests that:

sgX,A(k, l) = a11(x
22(k − kc)

2 + 2x23(k − kc)(l − lc) + x33(l − lc)
2) + const,

where kc, lc depend on aij and xij . Since x22x33 > (x23)2, the level curves of sgX,A are ellipses
centered at (kc, lc), with same eccentricities dependent on X. If such a level curve surrounds
two points in Z2 and excludes all other integer points, its major axis length is bounded by a
constant dependent on X. Therefore, there are only finitely many choices of (k0, l0) ∈ Z2, such
that (0, 0) and (k0, l0) are the only minimum points of sgX,A|Z2 . It follows that DS(X,Γ) is
finitely-sided for any X ∈ P(3).
Two-generated group of type (4). We interpret the group Γ as a two-parameter family,

g(k, l,m) = diag(ek, el, em), where the domain of g is the plane:

{(k, l,m) ∈ R3|k + l +m = 0},

and the preimage of Γ is Λ = Z(r, s, t)⊕ Z(r′, s′, t′). The function sgX,A is given by

(x11a11)e
2k + (x22a22)e

2l + (x33a33)e
2m + (2x23a23)e

−k + (2x13a13)e
−l + (2x12a12)e

−m

= c(e2(k−kc) + e2(l−lc) + e2(m−mc) + 2α23e
−(k−kc) + 2α13e

−(l−lc) + 2α12e
−(m−mc)),

for some constants c, kc, lc, mc, α12, α13, and α23 dependent on xij and aij . Moreover, c > 0,

|αij | < ξ := maxi ̸=j
|xij |√
xiixjj

, and kc + lc +mc = 0. Let d = d(k, l,m) represent the Euclidean

distance between (kc, lc,mc) and (k, l,m) divided by
√
6/2, then:

2(1− ξ)ed − 4ξe−d/2 + e−2d := f−(d) ≤ sgX,A(k, l,m)/c ≤ f+(d) := e2d + 4ξed/2 + 2(1 + ξ)e−d,

where the lower bound is attained when αij = −ξ and (k − kc, l − lc,m−mc) = (−d, d/2, d/2),
while the upper bound is attained when αij = ξ and (k − kc, l − lc,m−mc) = (d,−d/2,−d/2).
Moreover, limd→∞ f−(d) = ∞. For each level curve of sgX,A, the inequality implies that its
diameter D is controlled by its inscribed radius ρ via f−(D/2) ≤ f+(ρ). Similarly to the
preceding case, there are only finitely many choices of (k0, l0,m0) ∈ Λ, such that (0, 0, 0) and
(k0, l0,m0) are the only minimum points of sgX,A|Λ. It follows that DS(X,Γ) is finitely-sided
for any X ∈ P(3).

We now consider the cases when the Dirichlet-Selberg domain DS(X,Γ) is infinitely-sided
for a generic choice of X ∈ P(3). In the following proofs, we drop the requirement det(A) = 1,
as this condition can be regained by rescaling the matrix A whenever A is positive definite.

Proof of Theorem 2.6 for infinitely-sided cases.
Cyclic group of type (2). We interpret the cyclic group Γ as a one-parameter family, g(k) = γk,

where k ∈ Z. The function sgX,A, described in Lemma 3.15, is expressed as a quartic polynomial
in k:

sgX,A(k) = (x33a11/4)k
4 +

(
−x33a12 +

(
x33/2− x23

)
a11
)
k3

+
(
x33a13 + x33a22 + (3x23 − x33)a12 +

(
x33/4− x23 + x13 + x22

)
a11
)
k2

+
(
−2x33a23 + (x33 − 2x23)a13 − 2x23a22 + (x23 − 2x13 − 2x22)a12 + (x13 − 2x12)a11

)
k

+ (x33a33 + x22a22 + x11a11 + 2x23a23 + 2x13a13 + 2x12a12).

For any X ∈ P(3) and any k0 ∈ Z, our goal is to find a positive definite matrix A such that

sgX,A(k) = k2(k − k0)
2 + const,

ensuring that k = 0 and k = k0 are the only (global) minimum points of sgX,A.
The entries a11 and a12 are determined by comparing the k4 and k3 coefficients, following

by choosing a22 sufficiently large such that a11a22 − a212 > 0. Subsequently, the entries a13 and
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a23 are determined by solving a linear equation system derived from the coefficients of k2 and
k1, yielding a unique solution. Finally, let a33 be sufficiently large so that A is positive definite.
These steps result in a matrix A ∈ Fγk . Lemma 3.15 implies that DS(X,Γ) is infinitely-sided

for any X ∈ P(3).
Cyclic group of type (4). We interpret the cyclic group Γ as a one-parameter family, g(k) = γk,

k ∈ Z. The function sgX,A is expressed as:

sgX,A(k) = a22x
22e2sk + 2a23x

23esk + 2a13x
13e−sk + a11x

11e−2sk + const.

For any X ∈ P(3) with x13x23 ̸= 0 and any k0 ∈ Z, we can find a positive definite matrix A
such that

sgX,A(k) = e2sk − 2(esk0 + 1)esk − 2esk0(esk0 + 1)e−sk + e2sk0e−2sk + const,

similarly to the preceding case. This function has two global minimum points, namely k = 0
and k = k0. Lemma 3.15 implies that DS(X,Γ) is infinitely-sided whenever X does not belong
to the proper Zariski closed subset {X = (xij)−1 ∈ P(3)|x13x23 = 0}.
Two-generated group of type (2). We interpret the group Γ as a two-variable family, g(k, l) =

γk
1γ

l
2, (k, l) ∈ Z2. The function sgX,A is expressed as

sgX,A(k, l) = x33(a22(k − kc)
2 + 2a12(k − kc)(l − lc) + a11(l − lc)

2) + const,

and its level curves are ellipses with the center (kc, lc) dependent on xij and aij . Unlike the
two-generated groups of type (i), the eccentricities of these ellipses depend on A. Specifically,
for any coprime pair (k0, l0) ∈ Z2 and arbitrarily small ϵ > 0, we can choose the matrix A so
that the equation holds:

sgX,A(k, l) = ϵ2(k0(k − k0/2) + l0(l − l0/2))
2 + (l0(k − k0/2)− k0(l − l0/2))

2 + const. (3.9)

Entries a11, a12 and a22 are uniquely determined by comparing the k2, kl and l2 coefficients
and guarantee that a11a22 > a212. Furthermore, a13 and a23 are uniquely determined by letting
(kc, lc) = (k0/2, l0/2). Finally, let a33 be sufficiently large so that A is positive definite.
A particular level curve of such sgX,A has its major axis as the line segment between (0, 0)

and (k0, l0), and its minor axis length be ϵ times the length of the major axis. Since k0 and l0
are coprime, the ellipse excludes all other points in Z2 when ϵ is sufficiently small. By Lemma
3.15, the Dirichlet-Selberg domain DS(X,Γ) is infinitely-sided for any X ∈ P(3).
Two-generated group of type (3). We interpret the group Γ as a two-variable family:

g(k, l) =

1 −k k2 − l
0 1 −k
0 0 1

 , ∀(k, l) ∈ Λ = Λ(a, b),

where

Λ(a, b) =

{
(k, l)

∣∣∣∣k = x+ ay, l =
1

2

(
a2(y2 − y) + 2axy + 2by + x2 − x

)
, (x, y) ∈ Z

}
is a discrete subset of R2. The function sgX,A is expressed as

sgX,A(k, l) = (a11x
22 + 2a12x

23 + a22x
33)(k − kc)

2

+ 2(a11x
23 + a12x

33)(k − kc)(l − lc) + (a11x
33)(l − lc)

2 + const,

where kc and lc depend on aij and xij .
We claim that for sufficiently small δ > 0, there exists ϵ = ϵ(δ;X) > 0, such that ϵ = O(δ2)

as δ → 0, and for any (k0, l0) ∈ Λ with |k0/l0| = δ, there exists a positive definite matrix A
satisfying Equation 3.9.
Comparison of the k2, kl and l2 coefficients yields a linear equation system in unknowns

of a11, a12 and a22, which admits a unique solution. Given this solution, the positive definite
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condition a11a22 > a212 holds if

ϵ = ϵ(δ) :=

√
x22x33 − x232

x33
δ2 +O(δ4).

Setting (kc, lc) = (k0/2, l0/2) yields a linear equation system in unknowns a13 and a23 with an
invertible coefficient matrix, uniquely determining a13 and a23. Finally, let a33 be sufficiently
large so that A is positive definite. For such a matrix A, a particular level curve of sgX,A

is an ellipse whose major axis is between (0, 0) and (k0, l0), and whose minor axis length is
ϵ = O((k0/l0))

2) times the length of the major axis.
We address two cases based on whether the entry a of the generator γ2 is rational. If a ∈ Q,

we assume that a = p/q, where (p, q) are coprime. The first components of points in Λ take
values in (1/q)Z, and

Λ ∩ {(k0, l0)|k0 = 1/q} = {(1/q, l0(n))|l0(n) = (a(a− 1)− 2b)qn+ l0(0), n ∈ Z},

where l0(0) is a constant depending on a and b. By applying our construction of matrix A
to (1/q, l0(n)), we derive level curves surrounding (0, 0) and (1/q, l0(n)). Let δn = (1/q)/l0(n)
and ϵn = ϵ(δn); then δn = O(n−1), and thus ϵn = O(n−2) as n → ∞. Elementary computation
implies that the level curve we constructed for (k0, l0) = (1/q, l0(n)) lies between the lines

k =
1±

√
1 + q2(l0(n))2ϵ2n

2q
=

1± (1 +O(n−2))

2q
.

Thus, it is disjoint from the lines k = 2/q and k = −1/q for large n. Moreover, its other
intersection with the line k = 0 is(

0,
l0(n)(l

2
0(n) + q−2)ϵ2n

q−2 + l20(n)ϵ
2
n

)
= (0, O(n−1)),

which can be arbitrarily close to (0, 0) for large n. Consequently, the level curve excludes
all other points in Λ for sufficiently large n. By Lemma 3.15, the Dirichlet-Selberg domain
DS(X,Γ) is infinitely-sided for any X ∈ P(3).
If a /∈ Q, there are points (k, l) in Λ such that k is arbitrarily close to 0 while l is arbitrarily

large. Therefore, we can choose points (ki, li), i = 1, 2, . . . inductively, such that the level
curve of sgX,A we constructed previously for (ki, li) excludes all points in Λ\{(0, 0)} that are
surrounded by either of the level curves for (kj , lj), j < i. By Corollary 3.16, the Dirichlet-
Selberg domain DS(X,Γ) is infinitely-sided for any X ∈ P(3).
Two-generated group of type (5). We interpret the group Γ as a two-variable family:

g(k, l) =

e−k −le−k 0
0 e−k 0
0 0 e2k

 , ∀(k, l) ∈ Λ = Z(t, 1)⊕ Z(s, a) ⊂ R2,

where (s, t) ̸= (0, 0) and a ∈ R. The function sgX,A is expressed as follows:

sgX,A(k, l) = e2k(a11x
11 + 2a12x

12 + a22x
22 + 2l(a11x

12 + a12x
22) + l2a11x

22)

+ 2e−k(a13x
13 + a23x

23 + la13x
23) + e−4ka33x

33.

We claim that if x23 ̸= 0, then for any (k0, l0) ∈ Λ where k0 ̸= 0, there exists a point A ∈ P(3),
such that:
– A level curve of sgX,A is connected and passes through (0, 0) and (k0, l0).
– The level curve lies between the lines k = 0 and k = k0, and is tangent to these lines at
(0, 0) and (k0, l0), respectively.

Indeed, the level curve sgX,A(k, l) = c is the union of graphs of the following functions:

l = L±(e
−k; c) = L0(e

−3k; c)±
√
L1(e−k; c),
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where L0 is linear in e−3k, and L1 is a degree 6 polynomial in e−k.
We set a11 = 1. The entries a12 and a13 are uniquely determined by setting L0(1) = 0 and

L0(e
−3k0) = l0. The entries a23 and a33 are uniquely determined by setting L1(1) = L1(e

−k0) =
0 and depend on k0, l0, xij , c and a22. Under these solutions, det(A) forms a quadratic
polynomial in c, with the c2 coefficient:

−
(
1 + ek0

)2 (
1 + e2k0

)2
4 (ek0 + e2k0 + 1)

2
x232

< 0.

Setting c to be the maximum point of det(A), this determinant becomes a quadratic polynomial
in a22, with the a222 coefficient

e4k0

(
e2k0x232 +

(
1 + ek0

)2 (
1 + e2k0

)
x22x33

)
(1 + ek0)

2
(1 + e2k0)

2
x332

> 0.

Therefore, A is positive definite when a22 is sufficiently large. Moreover, one verifies that t = 1
and t = e−k0 are the only positive zeroes of L1(t), thus the level curve is connected.
We similarly discuss the two cases based on whether t/s is rational. If t/s = p/q ∈ Q, where

(p, q) are coprime, the first components of points in Λ take values in (s/q)Z, and there are
infinitely many points in Λ ∩ {k = s/q}. The level curve we constructed for such a point (s/q, l0)
lies between the lines k = 0 and k = s/q, thus it excludes all points in Λ other than (0, 0) and
(s/q, l0). By Lemma 3.15, the Dirichlet-Selberg domain DS(X,Γ) is infinitely-sided for any X
not belonging to the proper Zariski closed subset {X = (xij)−1 ∈ P(3)|x23 = 0}.
If t/s /∈ Q, we can utilize Corollary 3.16 and prove that DS(X,Γ) is infinitely-sided for any

X not belonging to the aforementioned proper Zariski closed subset, similarly to the proof for
two-generated groups of type (3).

3.6. Proof of Theorem 2.7

We first proof Case (i) of the Theorem, where n is assumed to be even.

Proof of Theorem 2.7, Case (i). Denote the eigenvalues of Ai by

λi,1 ≥ · · · ≥ λi,n/2 > 1 > λi,n/2+1 ≥ · · · ≥ λi,n > 0, i = 1, . . . , k,

and let vi,j be the corresponding eigenvector for j = 1, . . . , n. Recall that C+
Ai

=

span(vi,1, . . . ,vi,n/2), and C−
Ai

= span(vi,n/2+1, . . . ,vi,n). We claim that there exists an integer
M satisfying the following conditions:

– For any real numbers m±
i ≥ M , i = 1, . . . , k, the 2k bisectors Bis(I, A

m+
i

i .I),

Bis(I, A
−m−

i
i .I) are pairwise disjoint.

– For each bisector σ among the 2k ones, the center I of the Dirichlet-Selberg domain and
the other (2k − 1) bisectors lie in the same connected component of σc = P(n)\σ.

These claims will ensure that Γ = ⟨AM
1 , . . . , AM

k ⟩ is Schottky. The first claim follows because

lim
m→∞

||(A∓m
i )Tx|| =

{
0, ∀x ∈ C±

Ai
,

∞, otherwise,

which implies the existence of a positive number M such that for any m±
i ≥ M , certain positive

linear combinations of any two among the 2k functions

||(A∓m±
i

i )Tx||2/||x||2 − 1, i = 1, . . . , k,

defined on the compact space RPn−1, are positive. Utilizing Lemma 3.6, we deduce that the
2k bisectors

Bis(I, A
±m±

i
i .I) = ((A

∓m±
i

i )T.I − I)⊥
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are pairwise disjoint.
To prove our second claim, assume the opposite: there exist bisectors σ1 and σ2 among the

2k bisectors, such that σ2 and the center I lie in different components of σc
1. Without loss

of generality, suppose that σ1 = Bis(Am1
1 .I, I) and σ2 = Bis(Am2

2 .I, I). Fix a point X ∈ σ2;
as m → ∞, X and I will be in the same component of Bis(Am

1 .I, I)c. Thus, a real number

m′
1 > m1 ≥ M exists such that X ∈ Bis(A

m′
1

1 .I, I), contradicting our first claim.

We proceed to Case (ii), where n is assumed to be odd.

Proof of Theorem 2.7, Case (ii). Assume the opposite that Γ = ⟨A1, . . . , Ak⟩ < SL(n,R) is
Schottky, and none of the eigenvalues of these generators has an absolute value of 1. Without
loss of generality, we can assume that the center of the Dirichlet-Selberg domain is X = I, after
conjugating these generators.
We extend the notions of attracting and repulsing subspaces:

C+
Ai,C = spanC,|λi,j |>1(vi,j), C−

Ai,C = spanC,|λi,j |<1(vi,j),

where vi,j ∈ Cn is the eigenvector of AT
i associated with the eigenvalue λi,j . As n is odd, either

dimC(C
+
Ai,C) ≥ (n+ 1)/2 or dimC(C

−
Ai,C) ≥ (n+ 1)/2; assume the former for all i without loss

of generality. We deduce that

C+
A1,C ∩ C+

A2,C\{0} ≠ ∅.

On the one hand, for any m ∈ N, the bisectors Bis(Am
1 .I, I) and Bis(Am

2 .I, I) are disjoint,
following that Γ is a Schottky group with a ridge-free Dirichlet-Selberg domain centered at I.

On the other hand, we aim to derive a contradiction by showing that the bisectors
Bis(Am

1 .I, I) and Bis(Am
2 .I, I) intersect for sufficiently large m ∈ N. Take nonzero vectors

v ∈ C+
A1,C ∩ C+

A2,C, w ∈ (C+
A1,C ∪ C+

A2,C)
c.

Similarly to the proof of Case (i), we establish that

w∗((Am
1 .I)−1 − I)w, w∗((Am

2 .I)−1 − I)w > 0,

for sufficiently large m. Furthermore,

v∗(Am
1 .I)−1v = ||(A−m

1 )Tv||2 = ||φm(v)||2 ≤ ||φm||2 · ||v||2,

where φ represents the restriction of the linear transformation (A−1
1 )T to the AT

1 -invariant
subspace C+

A1,C of Cn, whose spectral radius is less than 1. Gelfand’s theorem implies that
limm→∞ ||φm|| = 0; a similar assertion holds for A2. Thus,

v∗((Am
1 .I)−1 − I)v, v∗((Am

2 .I)−1 − I)v < 0,

for sufficiently large m.
These inequalities imply that the pencil

((Am
1 .I)−1 − I, (Am

2 .I)−1 − I)

is indefinite for sufficiently large m. Following Lemma 3.6, the bisectors Bis(Am
1 .I, I) and

Bis(Am
2 .I, I) intersect for sufficiently large m, a contradiction.
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