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Geometry of Selberg’s bisectors in the symmetric space

SL(n,R)/SO(n,R)

Yukun Du

ABSTRACT

We study several problems about the symmetric space associated with the Lie group SL(n,R).
These problems are connected to an algorithm based on Poincaré’s Fundamental Polyhedron
Theorem, designed to determine generalized geometric finiteness properties for subgroups of
SL(n,R). The algorithm is analogous to the original one in hyperbolic spaces, while the
Riemannian distance is replaced by an SL(n,R)-invariant premetric.

The main results of this article are twofold. In the first part, we focus on questions that
occurred in generalizing Poincaré’s algorithm to our symmetric space. We describe and implement
an algorithm that computes the face-poset structure of finitely-sided polyhedra, and construct an
angle-like function between hyperplanes. In the second part, we study further questions related to
hyperplanes and Dirichlet-Selberg domains in our symmetric space. We establish several criteria
for the disjointness of hyperplanes and classify particular Abelian subgroups of SL(3,R) based
on whether their Dirichlet-Selberg domains are finitely-sided or not.

1. Introduction

1.1. Backgrounds

The space SL(n,R)/SO(n) studied in this paper is the Riemannian symmetric space
associated with the Lie group SL(n,R). As a symmetric space of non-compact type (A,_1I)
in Cartan’s classification[9], we consider it a generalization of the hyperbolic space. Using the
Killing form on sl(n) and the Cartan decomposition of SL(n,R)[4], one describes the space
SL(n,R)/SO(n) as follows:

DEFINITION 1. The hypersurface model of SL(n,R)/SO(n) is defined as the set
P(n) = Phyp(n) ={X € Sym,(R) | det(X) =1, X > 0}, (1.1)
equipped with the metric tensor
(A,B)x =tr( X 'AX"'B), VA, B € TxP(n).

Here, Sym,(R) denotes the vector space of n x n real symmetric matrices, and X > 0 (or
X > 0) means that X is positive definite (or positive semi-definite, respectively). Throughout
the paper, we consider the bilinear form (A, B) := tr(4- B) on Sym,(R) and interpret the
orthogonality accordingly.

The group SL(n,R) acts on P(n) as isometries via congruence transformations:
SL(n,R) ~ P(n), g.X =g" Xg.

We also introduce another model of P(n):
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DEFINITION 2. The projective model of P(n) is defined as follows:

P(n) = Pproj(n) = {[X] € P(Symn(R)) [ X > 0}. (1.2)

It is evident that Ppro;(n) and Ppyp(n) are diffeomorphic. The standard Satake compactifi-
cation and Satake boundary of P(n) are defined through the projective model:

DEFINITION 3. The standard Satake compactification of P(n) is the set
P(n)g = {[X] € P(Symn(R))| X = 0},
and the Satake boundary of P(n) is the set

0sP(n) =P(n)g\P(n).

We anticipate that many concepts and methodologies in hyperbolic spaces will have analogs
in the symmetric space P(n). Of particular interest is the generalization of Poincaré’s
Algorithm, initially proposed by Riley[19] for hyperbolic 3-space and extended by Epstein and
Petronio [6] for hyperbolic n-space, aimed at determining whether a subgroup of SO*(n, 1) is
geometrically finite.

Poincaré’s Algorithm typically involves constructing Dirichlet domains, which are convex
polytopes in hyperbolic space. However, Dirichlet domains in P(n) appear non-convex and
impractical for study. Hence, we adopt an SL(n,R)-invariant proposed by Selberg[21] as a
substitute of the Riemannian distance on P(n):

DEFINITION 4. For X, Y € P(n), the Selberg’s invariant from X to Y is defined as
5(X,Y) = tr(X 1Y),

Selberg’s invariant satisfies that s(X,Y’) > n for any X, Y € P(n), with equality if and only
if X =Y. Consequently, Selberg defines analogs of bisectors and Dirichlet domains:

DEFINITION 5. The (Selberg’s) bisector of two points X,Y € P(n) is defined as
Bis(X,Y)={Z e P(n)|s(X,Z) = s(Y, Z)}.

The Dirichlet-Selberg domain for a discrete subgroup I' < SL(n,R) centered at the point X €
P(n) is defined as

DS(X,T) ={Y € P(n)|s(X,Y) < 5(g.X,Y), Vg € T}

As in [11], Dirichlet-Selberg domains are also defined for discrete subsets of SL(n,R) for
computational purposes.

To comprehend the polyhedral nature of Dirichlet-Selberg domains, we generalize to P(n)
the concept of hyperbolic convex polyhedra. For instance, a d-plane in P(n) is defined as the
non-empty intersection of P(n) with a (d + 1)-dimensional linear subspace of the vector space
Sym, (R). Other notions such as hyperplanes, half-spaces, and convez polyhedra in P(n), along
with facets, ridges, and faces of a convex polyhedron P in P(n), can be defined analogously to
those in the hyperboloid model of hyperbolic spaces [18]. We denote the set of facets, ridges,
and faces of a convex polyhedron P by S(P), R(P) and F(P), respectively. Additionally, we
denote by span(P) the minimal plane in P(n) containing the convex polyhedron P.



GEOMETRY OF SELBERG’S BISECTORS Page 3 of 31

The group SL(n,R) acts on planes and convex polyhedra in P(n), enabling the definition
of fundamental polyhedra for subgroups of SL(n,R), exact convex polyhedra in P(n), facet
pairings for exact convex polyhedron P, and ridge cycles and the quotient space for a facet
pairing ®, analogously to the hyperbolic case, [18]. Notably, Dirichlet-Selberg domains for
discrete subgroups of SL(n,R) serve as fundamental polyhedra for them:

PROPOSITION 1.1 [11]. For a discrete subgroup T' < SL(n,R) and a point X € P(n), the
Dirichlet-Selberg domain DS(X,T) forms a convex polyhedron in P(n). Moreover, if Stabr(X)
is trivial, DS(X,T") serves as a fundamental polyhedron for T'.

With these notions established, we describe an analog of Poincaré’s Algorithm for SL(n,R):

Poincaré’s Algorithm (tentative). Suppose that we have a finite set of elements {g1,...,gn} C
SL(n,R) and a point X € P(n) as the center of Dirichlet-Selberg domains. The following
algorithm determines if the subgroup I' generated by these elements admits a finitely-sided
Dirichlet-Selberg domain centered at X:

(1) Start with { = 1 and compute the finite subset I'; C T', consisting of elements represented

by words of length <[ in the letters of g; and g, L

(2) Compute the face poset of the Dirichlet-Selberg domain DS(X,T;), which is a finitely-

sided polyhedron in P(n).

(3) Utilizing this face poset data, check if DS(X,T}) satisfies the following conditions:

(i) Verify if DS(X,T}) is an exact convex polyhedron. Namely, for each w € I',
ensure that the isometry w pairs the two facets contained in Bis(X,w.X) and
Bis(X,w™!.X) if they are non-empty.

(ii) Verify if DS(X,I) satisfies the tiling condition, i.e., if the quotient space M
obtained by identifying the paired facets of DS(X,I) is a P(n)-orbifold. We
consider formulating this with a “ridge cycle condition”.

(iii) Verify if the quotient space M is complete.

(iv) Verify if each element g; is generated by the facet pairings of DS(X,T), following
the method provided in [19].

(4) If any of these conditions are not satisfied, increment { by 1 and repeat the steps above.
(5) If these conditions are satisfied, Poincaré’s Fundamental Polyhedron Theorem and

Proposition 1.1 imply that DS(X,I}) is a fundamental domain for I'; analogously to

the hyperbolic case [18]. Consequently, T is a geometrically finite subgroup of SL(n,R).

Specifically, I" is discrete, with a finite presentation derived from the ridge cycles of

DS(X,Ty).

This generalized Poincaré’s algorithm prompts several questions, motivating the results
discussed in this paper.

1.2.  Preliminaries

Below we provide the essential preliminaries preceding presenting the main results of this
paper. We begin with introducing co-oriented hyperplanes:

DEFINITION 6. The normal space of a non-zero matrix A € Symy(R) is defined as
At ={X e P(n)|tr(X - A) =0},

constituting a hyperplane in P(n) whenever non-empty. We designate A as a normal vector
of the hyperplane A+. A hyperplane associated with a normal vector is called a co-oriented
hyperplane.
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The normal vector of a hyperplane is unique up to a nonzero multiple. Identical co-oriented
hyperplanes with normal vectors that differ by a positive multiple are regarded as the same co-
oriented hyperplanes. Conversely, identical co-oriented hyperplanes with normal vectors that
differ by a negative multiple from each other are said to be oppositely oriented. If o is a co-
oriented hyperplane given by AL, then the co-oriented hyperplane with the opposite orientation
is denoted by —o or (—A)*L.

We define a co-oriented hyperplane o to lie between two co-oriented hyperplanes A+ and B+
if the normal vector associated with o is a positive linear combination of A and B.

Some of our main results rely on matriz pencils:

DEFINITION 7. A real (or complex) matriz pencil is a set {A — ABJA € R} (or A € C,
respectively), where A and B are real n x n matrices. We denote this matrix pencil by (4, B).

A matrix pencil (4, B) is regular if det(A — AB) # 0 for at least one value A € C (equiva-
lently, for almost every X). We say (A, B) is singular if both A and B are singular and A — AB
is singular for all A € C.

We define the generalized eigenvalues of a matrix pencil:

DEFINITION 8. A generalized eigenvalue of a matrix pencil (A, B) is a number )¢ € C such
that A — \pB is singular.

For a regular pencil (4, B), the multiplicity of a generalized eigenvalue A¢ is the multiplicity
of the root A = \¢ for the polynomial det(A — AB) over .

If B is singular, we adopt the convention that oo is a generalized eigenvalue of the pencil
(A, B) with multiplicity n — deg (det(A — AB)).

Notably, every A € C = CU{oo} serves as a generalized eigenvalue of a singular matrix
pencil.

Furthermore, the SL(2,R)-action for a pair (A, B) of n x n matrices induces changes in the
generalized eigenvalues through a Mobius transformation:

LEMMA 1.2. Let A1,..., A, denote the generalized eigenvalues of the matriz pencil (A, B).
Then for any p,q,r,s € R with ps — qr # 0, the generalized eigenvalues of (pA + gB,rA+ sB)

are given by A, 1= fiig, i1=1,...,n.

A matrix pencil (4, B) is symmetric if both A and B are symmetric matrices. We define
definiteness for symmetric matrix pencils:

DEFINITION 9. A symmetric matrix pencil (A, B) is (semi-) definite, if either A or B is
(semi-) definite, or if A — AB is (semi-) definite for at least one number A\ € R.

We define congruence transformations of symmetric matrix pencils as

(4,B) = (QTAQ,Q"BQ),

where @ € GL(n,R), and A, B € Sym,(R). It’s worth noting that generalized eigenvalues
remain invariant under these transformations.
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Our work utilizes a normal form of matrix pencils under congruence transformation. We
begin by introducing block-diagonal matrix pencils:

DEFINITION 10. A block-diagonal matriz pencil is a matrix pencil (A, B), where A =
diag(Ay,...,Ap) and B = diag(By,...,By); for i =1,...,m, A; and B; are square matrices
of the same dimension d;.

The blocks of an n x n block-diagonal matrix pencil (A, B) define a partition of the set
{1,...,n}. We say the matrix pencil (A’, B') is (strictly) finer than the matrix pencil (A, B) if
the partition corresponding to the pencil (A’, B’) is (strictly) finer than the one corresponding
to (A4, B), up to a permutation of numbers 1,...,n.

Jordan canonical form characterizes the “finest” block-diagonalizations of regular symmetric
matrix pencils:

LEMMA 1.3 [23]. Let (A,B) be a symmetric matriz pencil with B invertible. Suppose
that the Jordan canonical form of B~*A is Q 'B~tAQ = J = diag(Jy,...,Jn), where J;
is a Jordan block of dimension d;, i =1,...,m. Then (A, B") = (QTAQ, QT BQ) is a block-
diagonal matriz pencil; the block (A;, B;) is of dimension d; fori=1,...,m. Moreover, (A’, B')
is finer than any matriz pencil in its congruence equivalence class.

DEFINITION 11. For a regular symmetric matrix pencil (A, B), let ¢ be any real number such
that B + cA is invertible, and Q1 (B + cA) 1 AQ is the Jordan canonical form of (B + cA) ™1 A.
Define the normal form of (A, B) under congruence transformations as

(4, B") = (QTAQ. Q" BQ).

Symmetricity of A’ and B’ together with the fact that A’ = JB’ implies the following, which
further characterizes the diagonal blocks of the pencil (4’, B):

LEMMA 1.4. In the notation of Lemma 1.3, let (A;, B;) be the diagonal blocks of the
congruence normal form (A',B’) of the matriz pencil (A,B), i =1,...,m. Suppose that

A; = (ag’k)jszl and B; = (bz’k)?szl. Then the entries ag’k satisfy:

(i) ai’k = ag/’k/, forany j+k=35 +F,
(ii) ag’k =0, for any j + k < d;.

The entries bfk satisfy the same property.

2. Main Results

Our first result focuses on step (2) in Poincaré’s Algorithm. Following the sub-algorithm
proposed in [6] for hyperbolic spaces, we adopt the Blum-Shub-Smale (BSS) computational
model[3], where arbitrarily many real numbers can be stored, and rational functions over
real numbers can be computed in a single step. However, this sub-algorithm cannot be fully
extended to P(n) due to a fundamental distinction: while a hyperplane of H™ is isometric
to H"~!, no analogous structure exists for P(n). To avoid this limitation, we introduce the
following lemma:
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LEMMA 2.1. Let By,...,B; € Sym,(R) be linearly independent matrices, and that
span(By,...,B)) contains an invertible element. Then span(Bi,...,B;) contains a positive
definite element if and only if

> #Bi>0 (2.1)

holds for a real and isolated critical point (xd,...,xl) of the homogeneous polynomial
P(z', ..., 2") = det(> 2'B;) restricted to the unit sphere S!=1.

Utilizing Lemma 2.1, we devise a sub-algorithm to address step (2) in the proposed Poincaré’s
Algorithm for SL(n,R). Subsection 3.1 provides a detailed exposition of this sub-algorithm.

Our second result focuses on step (3) (ii) in Poincaré’s Algorithm. We aim to establish a ridge
cycle condition for convex polyhedra in P(n), analogously to similar conditions in hyperbolic
spaces[18]. However, in P(n), the Riemannian angle should be substituted with an angle-like
function satisfying specific natural properties [11]:

DEFINITION 12. An invariant angle function 6(—,—) is a function defined on a subset of
the set of pairs of co-oriented hyperplanes (o1, 09) in P(n) with the following properties:
(i) For any co-oriented hyperplanes o1 and o9, 0 < §(01,02) < 7. Furthermore, 6(c1, 09) =

0 if and only if o1 = o9, while 0(c1,02) = 7 if and only if o1 = —03.

(ii) For any co-oriented hyperplanes o; and oo and any g € SL(n,R), 6(g.01,9.02) =
9(0’1, 0'2).

(iii) For any co-oriented hyperplanes o1 and o2, 6(02,01) = 6(01,02), 0(—01,02) =7 —
6‘(01, 02).

(iv) For any co-oriented hyperplane o3 lying between oy and o3, 6(01,02) + 0(02,03) =
0(c1,03).

We proceed to formulate the ridge cycle condition:

DEFINITION 13. Let P be an exact convex polyhedron in P(n), with facet pairing ®.
Assume that 6 is an invariant angle function defined on all pairs of hyperplanes of P(n)
intersecting at a ridge of P. We say that P satisfies the ridge cycle condition if each ridge
cycle [z] of @ satisfies the followings:

— The ridge cycle [z] is a finite set, [z] = {z1,...,2m}.

— The angle sum f[z] = >_i", 0(x;) = 27 /k for k € N. Here, 6(x;) represents the invariant

angle 6 of the two co-oriented hyperplanes spanned by the two facets of P containing x;.

We note that this ridge cycle condition does not depend on the choice of the invariant angle
function 6. For any exact convex polyhedron P in P(n), the ridge cycle condition is equivalent
to the tiling condition[11]. Indeed, let g; € SL(n,R) be the facet pairing transformation that

takes x; to x;41, and U; be a 1sufﬁciently small neighborhood of z; in P for i = 1,...,n. Then,
the images V; = (H;;ll gj> .U; and V4, share a facet. The ridge cycle condition for [z]
implies that the images V7,..., V, tile a neighborhood of z; in P, and vice versa.

We explicitly construct an invariant angle function for generic pairs of co-oriented
hyperplanes, as presented in the main theorem below.

THEOREM 2.2. Let linearly independent symmetric matrices A and B be normal vectors of
co-oriented hyperplanes o1 and oo in P(n), respectively. In addition, assume that the matriz
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pencil (A, B) is invertible. Denote the distinct generalized eigenvalues of (A, B) by A1,..., Am-
Then:
() If there exists some nonreal numbers Ai,..., Ay, Af,..., A} in the set of generalized
eigenvalues of (A, B), the following is an invariant angle function:

k
o1 2) = £ lrg(A)] 22

(ii) If all generalized eigenvalues of (A, B) are real (including oo), ordered as A\, > -+ > A,
and k > 3, the following is an invariant angle function (realized as a limit if A, = 0o is
a generalized eigenvalue):

Zk Air1+i
i=1 Nip1—A;

b
k 1 Eo (Nig1t+X)?
\/(Zi=1 >\7‘,+1—>\7~,) (Zi=1 N1
where A\p41 = A\1.

(iii) If all eigenvalues are real and k < 2, there is no invariant angle function defined on any
non-empty domain containing the full orbit of (01, 03) for the SL(2,R)-action.

v(o1,092) = arccos (2.3)

We present additional results concerning Dirichlet-Selberg domains and hyperplanes in P(n).
Among these results, we aim to determine whether two hyperplanes of SL(n,R)/SO(n) are
disjoint. Based on a result due to Finsler, [25], we prove the following:

THEOREM 2.3. Hyperplanes A+ and B+ in P(n) are disjoint if and only if either of the
following holds, up to a congruence transformation of (A, B):
(i) The matriz pencil (A, B) is diagonal and semi-definite.
(ii) The matriz pencil (A, B) is block-diagonal, where the blocks are at most 2-dimensional.
Moreover, all blocks (A;, B;) of dimension 2 share the same generalized eigenvalue X,
while A — AB is semi-definite.

An algorithm detailing the procedure for determining the disjointness of hyperplanes is
described in Subsection 3.3.

In addition, we establish a sufficient condition to ascertain if two Selberg bisectors Bis(X,Y)
and Bis(Y, Z) are disjoint, analogously to the hyperbolic case in [12]. First we consider maximal
flat totally geodesic submanifolds of P(n), which are isometric to the Euclidean (n — 1)-space.
In [14], one of these submanifolds is referred to as the model flat of P(n):

Froa = {diag(x1,...,zn) | z; > 0, Hmi =1}

Moreover, for any distinct points X,Y € P(n), there is an isometry g € SL(n,R), such that
g.Y =1 and g.X € Fp0q.
We divide the model flat into (2" — 2) chambers:

DEFINITION 14. The model flat Fy,,,q of P(n) is partitioned into (2™ — 2) chambers denoted
by
AT = {X = diag(x;) € Froal0 <z <1, Vi€ Z; x;>1, Vi¢ T}

For any number ¢ € (0,1), define

Af:{XGAI

min | log x| -
max|logz;| = |~
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AT is a cone contained in the chamber AZ and is away from the chamber boundary.

The sufficient condition is presented in the theorem below:

THEOREM 2.4. Let X,Y,Z be points in P(n), and L = min(s(Y, X),s(Y, Z)). Let gx and
gz € SL(n,R) be elements such that

gXY :gZY = Iv ,gXX € Fmoda gZZ € Frod-

Define 0 as the mazimum angle between the i-th column vector of g}lgz and the i-th standard
unit vector fori=1,...,n.

Suppose that there exists t € (0,1) and a subset T C {1,...,n} such that the points gx.X €
Al g7.7 € AT, and

1++/n— 2sind <¢g.<L_1>t/2. (24)

cosf —+/n —2sinf — n—1
Then the bisectors Bis(X,Y) and Bis(Y, Z) in P(n) are disjoint.

We also investigate whether a subgroup of SL(n,R) admits a finitely-sided Dirichlet-Selberg
domain for a generic choice of center. This property, examined by Poincaré’s Algorithm, implies
the geometric finiteness, though the reverse is not always true. In particular, we categorize
discrete Abelian subgroups of SL(3,R) with exclusively positive eigenvalues based on whether

their Dirichlet-Selberg domains are finitely-sided. We begin by exhausting all cases of such
subgroups:

PROPOSITION 2.5.  Let T be a discrete Abelian subgroup of SL(3,R) where all eigenvalues of
each v € T' are positive real numbers. Then, T is conjugate to a subgroup of SL(3,R) generated
by either of the following:

(i) For cyclic T, the generators are displayed below:

Type (1) (2) (3) (4) (5)
1 10 1 10 e 0 0 e 0 0 el 1 0
Generator 01 0 01 1 0 e 0 0 e* 0 0 e 0
0 0 1 0 01 0 0 ¢ 0 0 1 0 0 e 2
(r+s+t=0; (s#0) t#0)
r,s,t#0)
(ii) For 2-generated T', the generators are displayed below:
Type (1) (2) (3) (4) (5)

_ = O
®

)
)

1
Generators (O
0

0) (’ 1 0)
0 et 0

et 0 e 2
1
0
0

0 e’ a 0

et 0 0 e2

(b #a(a—1)/2) (rts+t= ((s, )
r+s+t'=0)

o o

— O

O = =
=)
~— ~—
TN —
: co N

o o o

oo~ OO
—Q

SIS
o o N

‘hm

o~ o O
=
S~—
—
o o=

(=)
—
O\\

o
~
~
AN
—
=
=}
=

The proof of Proposition 2.5 is elementary and is left to the reader. Our classification
regarding the finite-sidedness of Dirichlet-Selberg domains is presented below.



GEOMETRY OF SELBERG’S BISECTORS Page 9 of 31

THEOREM 2.6. Let T' be a discrete and free Abelian subgroup of SL(3,R), generated by
matrices with exclusively positive eigenvalues.
— IfT is a cyclic group of type (1), (3), or (5), or if it is a 2-generated group of type (1) or
(4), the Dirichlet-Selberg domain DS(X,T') is finitely-sided for all X € P(3).
— If T is a cyclic group of type (2) or (4), or if it is a 2-generated group of type (2), (3)
or (5), the Dirichlet-Selberg domain DS(X,T) is infinitely-sided for all X in a dense and
Zariski open subset of P(3).

Utilizing Dirichlet-Selberg domains in P(n), we extend the notion of Schottky groups[17] to
subgroups of SL(n,R):

DEFINITION 15. A discrete subgroup I' < SL(n,R) is called a Schottky group of rank k if
there exists a point X € P(n) such that the Dirichlet-Selberg domain DS(X,T) is 2k-sided
and ridge-free.

Schottky groups in SL(n,R) are free subgroups of SL(n,R), analogously to the original
notion in hyperbolic spaces. Our research investigates the existence of such groups among
subgroups of SL(n,R):

DEFINITION 16. For any A € SL(n,R) with only positive eigenvalues, one defines the
attracting and repulsing subspaces of R™ as follows:

Ch = spany,>1(vi), Cj = spano<r,<1(vy),

where v; denotes the eigenvector of AT associated with the eigenvalue \;, i =1,..., n.

THEOREM 2.7.

(i) Suppose that n is even, and Ai,..., A € SL(n,R) are such that the attracting and
repulsing spaces Ci’ i=1,...,k, are all n/2-dimensional and pairwise transversal.
Then there exists an integer M > 0 such that the group T' = (AM ... Aﬂ@ s a Schottky
group of rank k.

(ii) Suppose that n is odd, and A, ..., A € SL(n,R) generate a Schottky group and serve
as the facet-pairing transformations. Then for at least one generator A;, one of its
eigenvalues \ satisfies that |\| = 1.

3. Proof of the main results

This section aims to prove the main results presented in Section 2 and demonstrate the
connection of these results with the proposed Poincaré’s Algorithm.

3.1. Proof of Lemma 2.1, and description of step (2) in Poincaré’s Algorithm
We begin with the proof of Lemma 2.1:
Proof. The “if” part is self-evident. To prove the “only if” part, we assume that X' =

> a''B; is a positive definite element in span(By, ..., B;), where (z'%) :=x’ € R! is a unit
vector. This is consistent with the lemma assumption.
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We first show the existence of a critical point of P|gi-1 satisfying (2.1). Let X be the connected
component of SI"1\{P(z!,...,2!) = 0} containing x’. The region ¥ contains a local maximum
point xg of P|gi-1, which is the desired critical point.

We proceed to show that the critical point x¢ is isolated. Suppose the opposite that x¢ is
contained in an algebraic variety S with dimension > 1, consisting of critical points of P|gi-1.
By replacing x¢ with another point in S, we assume that xg is a regular point, contained in a
smooth curve of critical points, with an expansion:

x(t) = xo + tyo + t?zo + O(t?), |t| <,

where € > 0 and yo # 0. ,
Since the curve x lies in the unit sphere, both yg and zg + @xo lie in Ty, S!~t. As xq is
a critical point, the vanishing of the derivative of P along these directions implies that

2
tr(Xy'Yp) =0, tr(X; %) = — ”y;H

_ n
tr(Xg " Xo) =~ 2lyol
where X (t) = Y 2'(t)B;, Xo =Y 2} Bi, Yo = > yiB;, and Zy = > 2{ B;.

On the other hand, det(X (t)) = P(x(t)) = P(xo) = det(Xj), implying that:

DAi=0, > AN+ =0,
=1

1<i<j<n i=1
where \; and p;, i =1,...,n, are the eigenvalues of X(;lYO and X(;lZO, respectively, as real
numbers. Combining the equations above, we obtain that
n n n l
0< Y X =0 A —2Q_xN\) =2 mi=2u(Xg ' Zo) = —n ) _ llyoll* <0,
i=1 i=1 i<j i=1 i=1

which leads to a contradiction. ]

Utilizing Lemma 2.1, we can describe the following algorithm in the BSS model:

COROLLARY 3.1. There is a numerical algorithm with an input consisting of matrices
Ay, ..., A; € Sym,(R), yielding the following outcomes:

— If the intersection ﬂézl A = @, the algorithm outputs false.

- If ﬂé:l A is non-empty, the algorithm outputs true and provides a sample point in

l
mi:l AzL

Proof. Given the input Ap,...,A4; € Sym,(R), we compute a basis of the orthogonal
complement of span(Ay,...,4;) in Sym,, (R), denoted by {Bj,..., By }. Then,
!
m A} = span(By, ..., By) N P(n).

i=1

If P(z',...,2"") = det(>#'B;) =0, then ﬂizl A} is empty. Otherwise, P(z!,...,z") is a
homogeneous polynomial of degree n in variables z',... ,z!". The restriction of the polyno-
mial P(z',...,2")|gv_1 has finitely many isolated critical points, found by numerical BSS
algorithms, e.g., [1].

Let x1,...,x%,, denote these isolated critical points, where x; = (:r%, ey xél) By Lemma 2.1,
we determine if ﬂ;:ll Aj is empty and generate a sample point of it by verifying if }_ 2% B; is
positive definite for a certain j € {1,...,m}. The algorithm we described terminates within a
finite number of steps. ]
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Below, we describe step (ii) in Poincaré’s Algorithm, utilizing Corollary 3.1 and referring to
the algorithm for hyperbolic spaces described in [6].

Algorithm for Computing the Poset Structure of Polyhedra in P(n). Consider a point
X € P(n) and a list A’ of matrices A}, where ¢ = 1,...,k’. Define the half-spaces H; = {Y €
P(n)|tr(A] -Y) > 0} and the convex polyhedron P, = ﬂi:l H;,l=1,...,k. We aim to describe
an algorithm computing the face poset structure of Py consisting of the following data:

— A subset A= {44,..., Ax} of the input set A’.

— A two-dimensional array L/%°¢ comprised of numbers from the set {1,...,k’}, describing

the set {Fy,..., F,} of faces of Py. Specifically, L/°® is a 2D array {L{ace, oo, Liace),
where m = |F(Py)|, and such that

span(Fy) = ﬂ A, j=1,...,m.
ieLJf_ace

— A two-dimensional array LP°® comprised of numbers from the set {1,...,m}, describing
the inclusion relation among the faces of Pj/, namely

L;’OS:{lgigm\FiCFj}, jzl,,m

=

— An array L*%™P of elements in P(n), serving to describe sample points associated with
the faces of Py:

L™ e Fy, j=1,...,m.

Step (1). We aim to inductively obtain these data for each P, I =0,... k', and begin with
I = 0. Since the polyhedron Py is the entire space P(n), we initialize

Lface — {@}7 LPos = {@}7 L3emP — {X}, and A = @.

Step (2). We increase [ by 1. Assume we have a set A of n x n symmetric matrices, such that
P = Nea{tr(A-Y) >0}, as well as lists by L/2¢, LP°*, and L**™ for P,_; as described
above. We describe the computation of these data of P, = P,_1 N H; from which of P,_;.

Step (3). To begin with, we remove the first element of the list A’, denoted by A;, and
append it to A.

Step (4). For any face F' € F(P,_1), exactly one of the following relative positions holds for
the pair (F, H;) [6]:

(1) The face F' C 0H,.

(2) The face F' C int(Hj).

(3) The face F C H;, FNOH; # &, and F Nint(H;) # @.

(4) The face FNH;, = @.

(5) The face FNint(H;) =@, FNOH, # @, and F N Hf # @.

(6) The face F Nint(H;) # @ and F' N Hf # @.

Fori=1,...,6, we denote ]-";}l)(Pl_l) as the set of faces F' € F(P,_1) such that (F, H;) belongs
to relative position (i). We create a list L'*™P of length |F(P,—1)| to represent the relative
positions for these, initializing by {0,...,0}. We aim to replace the element L;emp with a
number from {1,...,6} indicating the relative position of (Fj, H;), where F; € F(P,_1).

Step (5). We first determine the relative positions of the minimal faces in F(FP,_1), i.e., the
faces F}j such that L1°* = @, which are planes in P(n). These can be ascertained by checking if
F; N H; = @ and computing tr(4; X;), where X; = L3*™" is a sample point of F}, with the sub-
algorithm described in Corollary 3.1. We can thus determine whether (F}, H;) is in positions
(1), (2), (4), or (6).

Step (6). We determine the relative position of non-minimal faces Fj, giving the relative
positions of all proper faces of F;. This is analogous to the corresponding step in [6].

Step (7). Utilizing the list L'**"P, we derive data L% for P;, also analogously to [6]. Namely,
the set of faces F(F;) consists of:
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— Faces F ¢ fl(qll)(Pl,l) U f;{zl)(Pl,l) U .7:}2)(13#1), and

— Intersections F'N H; and F N 0H;, where F € f}g)(Pl_l).

Step (8). We derive the data LP°° for P, as follows. For F € fgl)(Pl_l) U]-'gl) (P—1) U
]—"1(2)(1:’1_1), the set of its proper faces in F(P;) remains unchanged. For F € ]:I(fl)(Pl_l), the
proper faces of F' N H; include:

1 2 3

— Proper faces F’ of F, where F’ € ]'—I(il) (P—1)U fl(ql)(Pl_l) U ]:I(Jz) (Pi—1),

— Intersections F' N H; and F' N OH;, where F’ € -7'—;2)(131—1) is a proper face of F', and

— The intersection F' N 0H;.

For F € fg)(f’l,l), the proper faces of F'N 0H; include:

— Proper faces F’ of F where F’ € ]-"I(;l)(ﬂ_l), and

— Intersections F' N OH;, where F’ € ]-";2)(131_1) is a proper face of F.

Step (9). We derive the data L°*™P for P, i.e., the sample points of faces F; N H; and
F;n OH, for F; e fl(rfl)(Pl—l)

If F; N 0H,; is a minimal face, its sample point is given by Corollary 3.1. If it has at least two
proper faces, the sample point is given as the barycenter of the sample points of these proper
faces, utilizing the data LP°%. If it has exactly one proper face, the sample point is given by
perturbing the sample point of its proper face, similarly to [6].

The sample point of F; N Hy is derived by perturbing which of F; N 9H;, analogously to [6].

Step (10). We check if all numbers in {1,...,1} appear in LY as facets. If a number
i€{1,...,1} does not appear, we remove A; from the list {A;,...,A;}, decrease by 1 any
numbers greater than i appearing in L%, and decrease [ by 1.

Step (11). Repeat steps (2) through (10) if A" is non-empty. If A’ is empty, the algorithm
terminates, and the data A, Lf% LP°5 and L°*™ are the required output of the algorithm.

3.2.  Proof of Theorem 2.2

Recall the three types of regular matrix pencils mentioned in Theorem 2.2:
— Case (i): Some generalized eigenvalues of (A4, B) are nonreal.
— Case (ii): The pencil (A, B) possesses at least three (distinct) generalized eigenvalues, all
of which are real or infinity.
— Case (iii): The pencil (A, B) possesses at most two generalized eigenvalues, all real or
infinity.
We say that a given pair of co-oriented hyperplanes (A+, B+) in P(n) is of type (i), (i), or
(iii) if the pencil (A, B) corresponds to case (i), (ii), or (iii) above, respectively. By Lemma 1.2,
it is evident that the hyperplane pairs (o1,02) and (g.01, g.02) share the same type for any
g € SL(n,R). Furthermore, if o3 lies between oy and o9, both (01, 03) and (02, 03) belong to
the same type as (01, 02). Consequently, we can independently prove the three statements in
Theorem 2.2.
Case (i). We aim to prove that the function

k
1
0(o1,02) = > Jarg(Ai)]
=1

defined for all pairs (o1,09) of type (i) satisfies the properties listed in Definition 12. Here,
A1, ..., A and their conjugates are the nonreal generalized eigenvalues of (A4, B).

Proof of Theorem 2.2 (Case (i)). First, we establish the well-definedness of the function in
equation (2.2). According to Lemma 1.2, the nonreal generalized eigenvalues of (c; A, caB) are
%’\i and Z—f/\;‘, for any c;, ca > 0. Since these have the same arguments as A; and A}, the value
0((c1A)*, (2 B)*Y) = (AL, BL), i.e., the expression (2.2) remains unchanged. Furthermore,
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the arguments of \; and A} are opposite, ensuring that the expression (2.2) remains invariant
when replacing A\; with A}.

Next, we verify properties (i) to (iv) in Definition 12 for the function 6 defined by (2.2).
Property (i) is self-evident. For property (ii), we notice that the pencil ((¢=!)T.4, (¢~ 1)T.B)
for hyperplanes g.oq and g.0o shares the same generalized eigenvalues as (A, B).

To verify property (iii), note that the pencil (B, A) possesses generalized eigenvalues \; * and
A, 1*which have opposite arguments as \; and A7, respectively. Furthermore, the generalized
eigenvalues of (—A, B) are —\; and —A}, while |arg(—\;)| = 7 — | arg(\:)]-

Lastly, we verify property (iv). Since positive rescalings of A and B preserve the values of
O(A+, CL), 9(C*H, AL) and (AL, BY), we assume that C = A+ B. Lemma 1.2 shows that
the nonreal generalized eigenvalues of (A4,C) are (1+X;) and (1+ A}), while the nonreal

generalized eigenvalues of (C, B) are 7 j:;\ and 7%=, where ¢ = 1,..., k. Thus, property (iv)
holds due to the product law of arguments. '
Therefore, the function 6 defined by (2.2) serves as an invariant angle function. O

Case (ii). We aim to prove that the function

Zk Ait1+Nq
i=1 Xit1—M;
Zk 1 Zk (Nig1+X)?
i=1 X1 n; i=1 " Aip1—A;

defined for all pairs (o1,09) of type (ii) satisfies the properties listed in Definition 12. For
clarity, we introduce the notation

0(o1,09) = arccos

Ek Tip1+T;
=1 Ti41— T4

t(xl,...,xk): 5
k 1 E o (zig1+w)?
\/(Zi—l Ii+1—$i) (Zi:l ﬁ)
for any real numbers xi,...,zx, and t=(x1,...,25) =t(Toy,- -+ %o, ), Where {o1,...,0%}
represents the permutation of {1,...,k} such that z,, > -+ > x,,.

We start with a lemma concerning the compositions of t~. and Mobius transformations:

LEMMA 3.2. Let ¢ be a Mébius transformation on R = RU {oo}, and let A\, > -~ > \;
represent real numbers. If ¢ is orientation-preserving, then

(A1), o(Ak)) = t(p(M), - -+ (k) (3.1)
If v is orientation-reversing, then
(A1), 0(Ak)) = —t(e(A1), -, 0(Ak))- (3.2)

The proof of Lemma 3.2 is straightforward. We also require the following lemma:

LEMMA 3.3. For any real A, > -+ > Aq,

Z()\i+1+)\i—>\a+1 zk: 2+>\z+1+)\) 50

oy (A1 = A)(Njp1 — = i1 —

Lemma 3.3 is elementary.
We resume the proof of Theorem 2.2.
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Proof of Theorem 2.2 (Case (ii)). Property (i) in Definition 12 demands us to show that
(2.3) always yields values between 0 and 7, i.e., —1 < #(A1,...,Ax) < 1 for any real numbers
Ak > -+ > A1. Utilizing the Cauchy-Binet identity [24], we have:

Z zk: (N1 + )\ Z Aig1 + )\ _ 1 Z i1+ Xi — Xjg1 — A\)?
)\z+1 — Niq1— — Niy1 — 24 (Nig1 = A) (N — )

i—1 1#]

From Lemma 3.3, we deduce that the right-hand side is positive.

We proceed to prove the other properties. Property (ii) is proved similarly to the
corresponding arguments in the preceding case.

For property (iii), note that the generalized eigenvalues of (B, A) are )\i_l, which result from
an orientation-reversing Mobius transformation of A\;; i = 1,..., k. Lemma 3.2 implies that:

cosf(a2,01) =t (A7, A ) = —t(AT ALY,

and the summations in the expression of t()\fl, ey )\,;1) simplify to:
k k k
1 1 )\erl ) z+1 +X\i)?/4
Z 1 T = Z 1 Tt Z )
=N T Am o <>‘i — A = A A
k -1 —12 k — -1 k
AT+ PIIDY 4
LTy (< Lok - - Dty
i 1 N TN i=1 i T il =1 LT
Z A /\z+1 Z Aig1 + /\
)\_ i—1 )\1+1

This proves the former part of property (iii). For the latter part, note that the generalized
eigenvalues of (—A, B) are —A; > -+ > —\p.

Lastly, we address property (iv). Setting 6 = 6(o1,02), 01 = 6(01,03) and 63 = 0(o3,02),
property (iv) reduces to

cos(0) = cos(by + 02) = cos(61) cos(f2) — sin(61) sin(fz). (%)

Similarly to the the preceding case, we assume that o3 = (A + B)* without loss of generality.
The generalized eigenvalues of (A, A+ B) are (1+ ;) and (14 AF), and the generalized
eigenvalues of (A 4+ B, B) are 1+/\ and e 1 =1,..., k. Both sets are orientation-preserving
Mbobius transformations of A; and A}, ¢ = 1,..., k. Lemma 3.2 implies that

Zk 24+ Nip1+A
i=1 NN

Zk 1 Zk (24+Xip1+2:)?
i=1 N1 =N i=1" Nit1—A;

The summations in the expression of cos(f) are simplified to

cos(fy) =

M=

<>\i+1 + A +20 0 A — )\¢+1> 1 zk: 2+ X+ A1) (N1 + )

1 /\i+1 — /\1 2 /\i+1 - /\z ’

.
Il

LA+ As) A=A 1 i (24 A + Aip1)?
)\7;4_1 -\ 4 T4 /\Z‘J,_l - N\ ’

-

@
Il
-

M=

_|_

< Nig1 + A +20hig1)? A A ) zk: i+1 + /\
T+X)A+Xip) N —A) T+ T+ XN —~ \iy1 —

1 i=1

~.
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Thus, Lemma 3.2 also implies that

Zk (24X +Xir1)(Nir1+Ai)
i=1 NN

Eo (24Xi+Xrii1)? B (Qiga4A)?
\/ (oh, Bl (s, Guath?)
By applying the Cauchy-Binet identity, we have:
2
k 1 ko (24 Aig1+X)? ko 24 Xipith
o) \/(Zi_l m) (Zi:l ﬁ) - (Zi:l ﬁ)
1 =
k 1 ko (24X +X0)?
(ks i) (S, )
it +Xi=Aj1—X,)?
\/ Z#J Nig1—Ni (]J+1 by i)

)
Zk 1 Zk (24+Xir1+X:)?
i=1 Nir1— N i=1" At

cos(fq) =

sin

and

S ERR02) (§R Qs (5 GO ) 2
1=1 )\7;_*_17)\7; =1 >\i+17)\7’, i=1 )\'H—l*)\i
(62) =
Zk (24Xi+Xig1)? E/f (Nig1+X4)?
S Vs i=1 " Airi—\;
Z 4(>‘1+1+>\ —Aj+1—A;)?
7] (Nit1—=A)(Njr1—Aj)
Zk (24Xi+XNit1)? Zk (Nigr1+X:)?
S VI i=1 " Airi—Ai

Inequalities in Lemma 3.3 imply that

sin

iy 21X =X =)

2 £<i#] (N1 =) Ajr1—Aj)
ko (2FXig1+X:)? k 1 ko Qigati)?
(Zi:l Txia it s ) \(Zis RS

By combining the equations above and using the Cauchy-Binet identity again, we have

sin(f;) sin(fy) =

cos(f;) cos(f2) — sin(6y) sin(f2)
Zk 24+ Nip1+As Zk (24+Xi4+Xit1) (Nir1+Ai) Z 2(Nig1+HNi—X41-25)3
i=1 hri—h i=1 Nr1—n; T2 it uri Aot
ko (24Xip1+X0)? k 1 B (Qugp1+Ai)?
(Zi:l S VIR v 2im1 Py i1 S XA
Zn Aip1+A En (24N it1+X0)?
=1 Aip1—X\; =1 Nit1—Ai
= = cos(0).
ko (2+Xigp1+X:)?2 k 1 B (igp14+X)?
(Zi=1 Aig1—X; ZiZl Ait1—A; ZiZl Ait1— A

This proves property (iv) in Definition 12. Therefore, the function  given by (2.3) is an
invariant angle function. U

Case (iit). To prove statement (3) in Theorem 2.2, we begin by establishing the following
lemma:
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LEMMA 3.4. Let Kj =), es®e, l=1,...,7, be r X T matrices. Define that

s+t=r+l1

r r—1
X = Zlel, X = leKl+1.
=1 =1

Then for any s > 0 and t € R, there exists an element g € GLT(r,R) satisfying the conditions:

g X=X, (3.3)

g.X =sX +tX. (3.4)

Proof. We claim the existence of a matrix g of the form

g= Z sr/2_j+1pl(j_l)el ® e (3.5)
I<j

that satisfies (3.3) and (3.4).

If g follows equation (3.5), the entries above the anti-diagonal of both equations and those
on the anti-diagonal of (3.3) vanish. We will prove by induction on k that there exist numbers
pl(k) € R, wherel =1,...,r — k, such that all entries under the anti-diagonal of both equations
and those on the anti-diagonal of (3.4) equal on both sides.

We start with the base case k = 0. If we set pl(o) =1forl=1,...,r, thenthe (I + 1,7 +2—1)
entries of both sides of (3.3) are equal to z1, and the (I + 1,7+ 1 — ) entries of both sides of
(3.4) are equal to sx1, where [ = 1,...,r — 1. Entries above these depend on pl(l) and do not
need to be discussed here. ,

We proceed to the general case k > 0, assuming that the solutions pl(k) are determined
for 0 < k' < k. The (I +(§Sr +2 ?k)l) entries of (3.3), where I =2,...,r — k, yield (r —k —1)

equations in unknowns p; "/, ..., p, ", ; the symmetricity of ¢.X reduces the number of equations
to L’”;kj. The (I + k,r + 1 —1) entries of (3.4), where l =1,...,r — k, yield (r — k) equations
in unknowns pgk), ceey pf_k_)k, and the symmetricity of g.X reduces the number of equations to

LT_TWJ Combining these equations yields a system of (r — k) linear equations, which is upper-
(k) (k) (k) (k)

triangular if the (7 — k) unknowns are arranged as py ', p, /), Py 5 - - - Pk Thus, a unique
, 2
solution pgk), e ,pi’i)k exists, dependent on s, ¢, z1,...,25+1 and p;k ), where 1 < j <r—Fk
and k' < k.
By induction, a solution set pl(k) exists in terms of x1,...,2,, s, and t, where k =1,...,r — 1
and [ = 1,...,r — k. Thus, there exists a matrix g satisfying (3.3) and (3.4). O

Lemma 3.4 implies the following:

LEMMA 3.5. (1) Suppose that (A, B) is a reqular pencil of symmetric n X n matrices with
only one distinct eigenvalue A € R, and let C' = A — AB. Then, for any s > 0 and t € R, there
exists an element g € GLT(n,R) such that:

gC=C, g¢g.B=sB+tC.

(2) Suppose that (A, B) is a regqular pencil of symmetric n X n matrices with only two distinct
eigenvalues \, N € R, and let C = A — B, C' = A— XN B. Then for any s,s’ > 0, there exists
an element g € GL™ (n,R) such that:

g.C =s5C, ¢.C'=5C".
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Proof. (1) Suppose that the pencil (A, B) has one distinct eigenvalue A € R. According to
Lemma 1.3, we may assume that the matrix pencil is in the normal form:

A = diag(Ay,. .., Ar),
and
B = diag(By, ..., By),

where A; = B;J Ar;» and Jy ., denotes the Jordan block of dimension r; and eigenvalue \.
Let Bj = B; — AAj = BjJo,,. According to Lemma 3.4, for any s > 0 and ¢ € R, there exist
elements g; € GL™ (rj,R) such that:

gj-Bj = Bj, gj-Bj = SBj + tBj.

Let g = diag(g1,...,9x) € GLT(n,R), then g.C = C and g.B = sB + {C.
(2) Suppose that the pencil (4, B) has exactly two distinct eigenvalues A, \' € R. We may
assume that the matrix pencil is in the normal form:

A = diag(Ay,..., A, AL, ..., A)),
and
B = diag(By, ..., By, B,, ..., B)),
where A; = B;Jy,, and A;- = B}JA/J,J/_. Let Bj = BjJo,, and B; = Bé'JO,rj’n According to

Lemma 3.4, for any s,t > 0, there exist matrices g;, j = 1,...,k, such that
~ ~ t t—s =~
gj-Bj:Bja gj'Bj:;Bj+7s(>\_>\/)ij
and matrices g7, j = 1,...,[, such that
I D D/ /75/ s—t H/
gj'Bj = Bj7 gj'Bj == EB] + mBj

Let g = diag(v/391, - - s v/39k, Vgl - .., V1g)) € GLT(n,R), then g.C = sC and g.C' =tC’'. [
We now return to part (iii) of Theorem 2.2.

Proof of Theorem 2.2 (Case (iii)). A positive rescaling of the normal vector does not change
the associated co-oriented hyperplane. Therefore, we may replace the part “g € SL(n,R)” in
Definition 12 with “g € GL"(n,R)”.

(1) Suppose that (A, B) has only one eigenvalue A € R and C' = A — AB. By replacing (4, B)
with an element in its SL(2, R)-orbit, we may assume A > 0. By Lemma 3.5, there is an element
g € GL*(n,R), such that g.C = C and g.B = AB + C = A. Denote o, = (¢ *.A)*, which is
compatible with the notations o7 = A+ and o9 = B*. Then,

O0(ok,on1) = 0((g"F.A)", (¢" . B)F) = 0(AT, BY) = 0(0y, 02).
One verifies that
W —1D)gtFA=0F - N)g " A+ (A—1)A,

i.e., Oy lies between 6, and 0y1. Property (iv) of invariant angle functions implies that
m—1
O(o1,0m) = O(ok,0k4+1) = (m —1)0(01,09)
k=1
for any m > 1, greater than m for m sufficiently large, a contradiction.
(2) Suppose that (A, B) has two eigenvalues A and X', C = A — AB, and C' = A — X'B. By
replacing (A, B) with an element in its SL(2, R)-orbit, we may assume A > X' > 0. Lemma 3.5
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implies the existence of an element g € GL™ (n,R) such that g.A = B, g.C differs from C by
a positive multiple, and g.C" differs from C’ by a positive multiple. Denote o), = (g1 ~%.A)*,
k € N; we verify that oy, lies between o1 and oy41 for all k£ > 1. Similarly to part (1), the value
of 6(o1,0.,) exceeds 7 for m large enough, leading to a contradiction.

In conclusion, for all symmetric matrix pencils (4, B) of type (iii), there are no invariant
angle functions defined on its entire SL(2, R)-orbit. O

3.3.  Proof of Theorem 2.3, and the algorithm determining disjoint hyperplanes

We will prove Theorem 2.3 in this section, which describes an equivalent condition for that
two hyperplanes in P(n) are disjoint. We begin by reviewing a result of Finsler [25], providing
an equivalent condition for ();.; 0; # &, where Z is a finite set.

We introduce ¥ as the collection of the hyperplanes o; for i € Z. Moreover, A denotes the
collection of the corresponding normal vectors A;, which are symmetric matrices. We define
the definiteness of a collection of symmetric n X n matrices:

DEFINITION 17. We say the collection A = {A; € Sym,(R)|i € I} is (semi-) definite if
there exist numbers ¢; € R for ¢ € Z such that

A= ZczAz

i€T
is a non-zero positive (semi-) definite matrix.

Further, we introduce notation related to the Satake compactification P(n) C P(Symy,(R)):

DEFINITION 18. For A € Sym,(R), define

N(4) = {X € P(Sym, (R))]tr(A - X) = 0},

and define A+ = P(n) N N(A).

The relationship between the definiteness of A = A; and the emptiness of the intersection
N Ai is described by the following lemma:

LEMMA 3.6 (cf. [25]). The collection A= {A;}F_| of n x n symmetric matrices is semi-
definite if and only if the intersection ﬂle At is empty. Furthermore, A is (strictly) definite
if and only if A+ = @.

Proof. The proof for the case of k = 1 is straightforward, achieved by applying an SL(n, R)-
action and assuming that A is diagonal. To extend the proof to general k € N, one notices
the following: if (A is empty, then the subspace [ N(A;) C P(Sym(n)) is disjoint from
the closed convex region P(n) C P(Sym(n)). Therefore, there exists a support hyperplane

N(B) Cc P(Sym(n)) such that N(A;) C N(B) and N(B)NP(n) = 2. O

To continue proving Theorem 2.3, we first examine the case where (A, B) is a regular pencil.
Case (1). Assume that (A, B) constitutes a regular pencil. If two hyperplanes A+ and B+
are disjoint, we have the following supplement to Lemma 3.6:
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LEMMA 3.7. If two hyperplanes A+ and Bt in P(n) are disjoint and (A, B) is regular,
then all generalized eigenvalues of (A, B) are real numbers.

The proof of Lemma 3.7 relies on certain algebraic results:

LEMMA 3.8. Let tg be a real generalized eigenvalue of a symmetric n X n matrix pencil
(A, B). We define a continuous function A(t) in a neighborhood of t =ty such that A(t) is an
eigenvalue of A — Bt and A(ty) = 0.

Then, in a neighborhood of t = ty, the function A(t) can be expressed as a product:

A(t) = (t = 10)*w(D),

where s € Ny and p(t) is a continuous function with p(to) # 0.

Proof. Around (A, t) = (0,%9), A(t) has a Puiseux series expansion (see, e.g., [2]) with
fractional exponents of denominator d. If d > 2, then some of the eigenvalues are not real in a
punctured neighborhood of ¢t = ¢, leading to a contradiction. Hence d = 1, and the conclusion
follows. |

Proof of Lemma 8.7. TFirst, we assume that A+ and B-L are disjoint, indicating that the
pencil (A, B) is (strictly) definite. By applying an SL(2,R)-action on (4, B), we assume that
B is positive definite, without altering the conclusion as per Lemma 1.2. Suppose that the
polynomial det(A — ¢B) has distinct real zeroes ¢; of multiplicity r;, where i = 1,... k. For
each i, there is a neighborhood U; D t;, on which the eigenvalues of (A —¢B) are smooth
functions A;(t) of t, j =1,...,n.

Suppose the signature of A — A\;B changes by 2k at t = ¢;, i.e., k eigenvalues among \;(¢),
j=1,...,n, change the sign at ¢ = ¢;. Lemma 3.8 implies that the determinant

det(A — tB) = ﬁ A (1),

a polynomial in ¢, has a factor (¢t — t;)*. That is, the zero t; of det(A — tB) is of multiplicity at
least k. Since B is positive definite, the signature of (A — ¢tB) increases by 2n from —M to M
for a sufficient large M < oo, implying that (A — ¢B) has at least n real zeroes between —M
and M (counting multiplicity). Consequently, all generalized eigenvalues of (A, B) are real.
Next, we assume that A+ and B* are disjoint, indicating that (A, B) is semi-definite. We
demonstrate that that all generalized eigenvalues of (A4, B) are real by considering a sequence
{(A;, B;)}$2, of strictly definite matrix pencils approximating (A, B). O

We proceed with the proof of Theorem 2.3:

Proof of Theorem 2.3 (regular case). The “if” part is straightforward. For the “only if”
part, we assume that B is invertible. Furthermore, we consider that (A, B) is a real block-
diagonal matrix pencil, B~'A is a real matrix in Jordan normal form, with Jordan blocks of
the same dimensions as the block-diagonal pencil (4, B).

Suppose that (A, B) contains a block (A;, B;) of dimension d; > 3. Utilizing Lemma 1.4, it’s
evident that all elements in (4;, B;) are indefinite, implying that (A4;, B;) is is an indefinite
pencil, a contradiction.

Now suppose that (A, B) contains a block (A4;, B;) of dimension 2. Similar reasoning via
Lemma 1.4 suggests that A; — AB; is the only possible semi-definite element, where A is the
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generalized eigenvalue of (A;, B;). Consequently, all blocks of dimension 2 share the same
eigenvalue \.

Lastly, if (A, B) is diagonal, hyperplanes A+ and B+ are disjoint if and only if (4, B) is
semi-definite. |

Case (2). Consider now the case where (A, B) is a singular pencil. If the pencil (A, B) arises
from a lower-dimensional pencil, we have the following lemma:

LeEMMA 3.9. Suppose that Ao, By € Symp,(R) and A = diag(Ao, O), B = diag(By,0) €
Sym,(R). Then A+ N B+ =@ if and only if Af N By = @ (in P(m)).

The proof of the Lemma is evident.
Additionally, we will utilize the following result:

LEMMA 3.10 [10]. Let (A, B) be a singular symmetric n. x n matriz pencil. Then (A, B) is
congruent to (A’ B'), where the matrices A’ and B’ satisfy

A O O B, B, O
A=lo o o|, B=|BY o o],
O 0 0 O O B;

for ny X ny matrices A1 and By, an ny X ny matriz Bs, and an n3 X ng matriz Bz, where
ny + no + ng = n. Moreover, Ay and B3 are invertible.

We proceed with the proof of Theorem 2.3:

Proof of Theorem 2.3 (singular case). The ”if” part is clear. For the “only if” part, from
Lemma 3.10, we observe that (A, B) is congruent to both:

Al O O Bl B2 O
P'AP=(0O0 O oO|, P'BP=(Bf O O], (3.6)
O O O O O Bs
and
AL A, O B, O O
PTAP =AY O O], P'BPP=(0 0O O], (3.7)
O O A O O O

where A;, Bs, A5 and Bf are invertible.

If both AL and By are nonzero, we construct a positive definite matrix orthogonal to A and
B as follows. The nonzero A} implies that A is indefinite, so is A;. According to Lemma 3.6,
there is a positive definite matrix X; perpendicular to A;. As By # O, there is a matrix Xo
such that

2tr(X2 . Bg) + tI‘(Xl . Bl) —+ tr(B3) =0.

Since X is positive definite, there exists a positive definite matrix X4, such that

X1 X
xI x,
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is positive definite. Hence,

X, X, O
X:=P- (X3 X, O|-PTecAtnBt.
O O I

Therefore, A+ and B are disjoint only if either A} = O or By = O. Without loss of generality,
suppose that By = O, then (A4, B) is congruent to (diag(Ag, On—m), diag(Bg, On_m)), where
(Ao, Bp) := (diag(A1,0),diag(By, Bs3)) is an invertible pencil of dimension m. Applying
Theorem 2.3 (regular case) to (Ao, By), we conclude that (A, B) satisfies either condition (i)
or (ii). O

Derived from Theorem 2.3, we describe an algorithm that checks if two hyperplanes A+ and
Bt are disjoint:

Algorithm for certifying disjointness of two hyperplanes. For given normal vectors A, B €
Sym,,(R) of hyperplanes in P(n), we follow these steps to ascertain if A+ N B+ = @:

(1) Determine if (A4, B) is regular by computing the coefficients of det(A — ¢tB).

(2) If (A, B) is regular, assume that A is invertible without loss of generality. Compute the
Jordan normal form of A=!B = PJP~! using the standard algorithm.

(3) If any Jordan block of J has dimension > 3, then A+ and B+ are not disjoint.

(4) Otherwise, compute Ag = PTAP and By = PTBP. If J has blocks of dimension 2, check
if all these blocks share the same eigenvalue A and if the diagonal matrix Aqg — ABy is
semi-definite. This condition holds if and only if A+ N B+ = @.

(5) If J is diagonal, check if the diagonal matrices Ag and By have a positive semi-definite
linear combination. This condition holds if and only if A+ N B+ = @.

(6) If (A, B) is singular, compute the standard form of (A4, B) as in equations (3.6) and (3.7)
following the algorithm described in [10].

(7) In the standard form mentioned above, if both matrices By and A/, are nonzero, then
AL and B are not disjoint.

(8) Otherwise, assume that By = O, let Ay = diag(A4;,0) and By = diag(B1, Bs). Check if
Ag N By = @ by performing steps (2) to (5). This is equivalent to that A+ N B+ = &.

3.4. Proof of Theorem 2.4

We prove Theorem 2.4 after a few lemmas:

LEMMA 3.11. Let X = diag(x;) € AT and s(I,X) > L, L >n. Then for any i € T and
Jers,
|zt — 1 (L—l)t
—_— 2>t .
|m;1—1| - n—1

Proof. The Lemma’s assumption implies the existence of u > 0 such that z; € [e™ %, e~ ]
for i € Z, and x; € [e™, e"] for i € Z°. Suppose that |Z| =k, 1 < k < n — 1. We deduce that

L< Zml <ke ™4 (n—k)e* <k+(n—ke,
thus e* > (L —k)/(n—k) > (L —1)/(n —1). It follows that

—1 tu t
=1 -1 L—-1
|JJ11 |2€ ZtetuZt ,
|xj_ —1] 1—e @ n—1

for any i € Z and j € Z°. |
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The two lemmas below are self-evident:

LEMMA 3.12. Suppose that g = (gl 52> € SO(n), where g1 € Matx(R). Then, g=
3 g4

g, = ((91‘1)T —(gfl)ngT> g:< I Ql)
O I ’ ~94 93 Ua

LEMMA 3.13. Define

g+9-", where

n n
or(A) = mgxz lai;],  oc(A) = mjaXZ |ai;]
j=1 i=1

for a matriz A = (a;;) € Mat,,(R). If there exist elements A, B € Mat,,(R) such that 0,(A) < a
and o.(B) < b, then 0,.(AB) < ab. A similar conclusion holds for oe.

Utilizing Lemma 3.13, we have the following result:

LEMMA 3.14. Consider a matriz A = (a;;) € Mat,,(R), where a;; > a and Zj# la;j| <d
for alli=1,...,n, and a > a’ are real numbers. Then A is invertible, with o.(A™1) < a_la,.
A similar conclusion holds for o..

Proof. This follows directly from Lemma 3.13, with noticing that

AT = AT = A (- An)F,

k=0
where

Al = diag(ai_il), Az = (aij/an‘)?,j:l'

We turn to the proof of Theorem 2.4.

Proof of Theorem 2.4. By applying the SL(n,R)-action, we can assume that Y =1, X
is diagonal, and Z = {k+1,...,n}, where 1 <k < n. Let g = gz = (g:5) € SO(n), expressed

93 94
corresponding to the blocks g through g4 and satisfying g = g+g:1. Since g.I = I, it follows
that g_.I = g4.I. Denote that Xo = X and Zy = g.Z, both being diagonal matrices. Then,
(971)".Z = (9=")T.Zy. Our goal is to show that the images of Bis(X,Y) and Bis(Y, Z) under
the (gjrl)T action are disjoint, which can be expressed as:

(9+- (X' = D) N(g-(Zy '~ D)t = 2. ()

as g = (gl g2>’ where g1 € Mati(R). Let g, g— be matrices described in Lemma 3.12,

For Xy = diag(z;) and Zy = diag(z;), Lemma 3.11 implies that for any ¢ < k and j > k,

|z —1] L—1\" |z ' =1 L—1\'
—1 Zt ) Z_l Zt .
|z =1 n—1 |Zj -1 n—1




GEOMETRY OF SELBERG’S BISECTORS Page 23 of 31

Thus, there exist positive constants ¢, and ¢, such that for any ¢ < k and j > k,

L—1\'
cgc(xj_l—l)zt(n_l), —1<cy(z;' —1)<0.

t (3.8)
-1 L-1 -1
ez —1)>t- ) —1<ec.(z;  —1) <0.
Denote
h = (hs;) = diag(Iy, O)g4 + diag(O, In—k)g-
then

((91 )Tl )Tes )
94 93 n ’
and h is decomposed as h = h, 1hy,, where
T T
_ (91 O _ I —93 >
he = , hy = .
( O 94) b <—93 1

As gx is assumed to be the identity matrix, the angle between e; and the i-th column vector of
gz is at most 6, which implies that the diagonal elements of &, are no less than cos 6. Moreover,

> Igijlé\/(k—l) > g3 <\V/(k—1)sinf < \/(n—2)sino,

Jj#i,3<k j#i,j<k
thus o, (hy), 0c(hy) <1+ +/n — 2sinf. By Lemma 3.13 and 3.14, we deduce that
1+ +v/n —2sinf

r(h),0.(h) < .
or(h), oe(h) cosf —+/n—2sinb

We establish the condition (*) by proving the positive definiteness of the linear combination ¢, -
gr-(Xg ' =D 4o g-(Zyt —1). Let ¢ - g4 (Xg ' — 1) = (&) and ¢, - g—.(Zy ' — 1) = (&)
For i < k, we have the following inequalities:

5" - Zhlz xl - 1 Zhlm

1<k 1<k
oIl < >0 Thaallhyllat =1 < > (Al bl
i#i i, I<k i#i, 1<k
Gi= (7" =1+ bz = 1) = t(L—1)/(n—1))" = > h,
1>k 1>k
Yol < Y0 Thullhgllz =1 < >0 (bl byl
i i, 1>k i, 1>k

Hence,

2 n
14++vn—2sind 9
i+ Ci > t((L—1)/(n—1)) hi > - i
i 6 (( (n Z ! (cos&x/n2sin0> 1:21 !

= o, (h)oe(h) — Zh > ZUT ) hai| — Zh > bl il = >k
=1 1,j =1
= Z | s || > Z|§zj + Gijl-

j#i,1<I<n J#i
For i >k, the inequality &;; + Cii > Z#l |&i; + Cij| holds analogously. This implies that

cr gr(Xg' = I)+c.-g_.(Zy' —1) is diagonally dominant and hence positive definite.
Therefore, the condition (*) holds, implying that Bis(X,Y") and Bis(Y, Z) are disjoint. O
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3.5.  Proof of Theorem 2.6

Let T' be a discrete subgroup of SL(3,R) and let X € P(3). A facet of the Dirichlet-Selberg
domain D = DS(X,T) lies in the bisector Bis(X,~.X) for a certain v € I'. We denote such a
facet by F’,. The existence of such facets is characterized by the following lemma:

LEMMA 3.15. Let T be a discrete subgroup of SL(n,R). Suppose that there exists a smooth
function g : R™ — SL(n,R) such that T = g(A), where A is a discrete subset of R™, 0 € A,
and g(0) = e. For A, X € P(n), define a function s% , : R™ = R, s% (k) = s(g(k). X, A).

Then for any ko € A\{0}, the facet Fyu,) of DS(X T) exists if and only if there exists a
matriz A € P(n) such that 0 and ko are the only minimum points of s% 4|a-

Proof.  The existence of the facet Fy,) is equivalent to the existence of an interior point
A of the facet. Moreover, s% , for this interior point A satisfies the lemma requirements, and
vice versa. |

REMARK 1. Lemma 3.15 provides insights into the nature of Dirichlet-Selberg domains.
Given X € P(n) and I' < SL(n,R), the lemma implies the following:
— If for all but finitely many points k € A and for every A € P(n), the function s% 4| cannot
be minimum at both k and 0, the Dirichlet-Selberg domain DS(X,T) is finitely-sided.
— If there are infinitely many points k € A such that k and 0 are the only two minimum points
of s% 4la for a certain A € P(n), the Dirichlet-Selberg domain DS(X,T') is infinitely-sided.

We present a generalization of Lemma 3.15:

COROLLARY 3.16. LetT', g, A and sg(’A be as defined in Lemma 3.15. Suppose that there
exists a matriz A € P(n) and a finite subset Ag C A satisfying the following conditions:
(i) The point 0 € Ay.
(i) There exists a nonzero point ko € Ag such that s% 4 (ko) = s% 4(0).
(iii) For any k € Ao, s% 4(k) < 5% 4(0); for any k € A\Ao, ngA(k’) > 5% 4(0).
Then the Dirichlet-Selberg domain DS(X,T) has a facet Fyqu for at least one element k €

Ao\{0}.

Proof. Let Ag = {0,ko,k1,...,k,}, where the elements are ordered as

5% a(ko) = 8% 4(k1) >+ = 5% 4 (k).
Define
A; = (A\AQ)U{O,kQ,...,kZ’}, 7;:0,...,7“.

The following statement is evident by induction on i, utilizing Lemma 3.15:
(*) The Dirichlet-Selberg domain DS(X, g(A})) contains a facet Fyy,) for a certain j €

{0,....i}.

When ¢ = r, (*) concludes this corollary. O

The proof of Theorem 2.6 comprises a series of assertions, divided into finitely-sided and
infinitely-sided parts. For clarity, we consistently denote the (i, ) entry of X! and A by 2%
and a;;, respectively. We denote the generator of cyclic groups by y, and the two generators of
2-generated groups by v, and s, as listed in Proposition 2.5.
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Proof of Theorem 2.6 for finitely-sided cases.

Cyclic group of type (1). We interpret the group I' = () as the image of Z under the function
g(k) = ~*, ¥k € R. The function s% 4 described in Lemma 3.15 becomes a quadratic polynomial
with a positive leading coefficient: ’

S_gX,A(k‘) = 2 agok?® 4 2(x M arg + 21 %a90 + 23 a03)k + const.

Thus, if s% 4|z attains its minimum at k = 0, the other possible minimum point is either
k= —1or k = 1. The remark following Lemma 3.15 implies that Dg(X,T") is two-sided for any
X € P(3).

Cyclic group of type (8). Similarly, we interpret the group I = (7) as a one-parameter family,
g(k) =% = diag(e™, e**, et*), where r + s+t =0, and r, s,t # 0. Without loss of generality,
we assume that r > s > 0 > t. The function 53(714 described in Lemma 3.15 becomes:

1 —2rk

g _1 22 _osk
5X7A(/<;)—m ajie + x%“a9ge

+ 233 a33e 72 4+ 2023093 4 2013 a5 + 2012 a et

Since 2% and a;; > 0 for 4 = 1,2, 3, there exists a unique k. € R such that

/x”aue*’”kc—k /xzzamefskc: /x33a33€7tkc'

Hence, s% 4(k) = ¢ f(k — k), where
f(k)= 2Tk L opayzet + 2(1 — p)asge™ + p?e 27 + (1 — p)2e 2 + 2p(1 — P)Oéu@*(rﬂ)k,

and
Vil e ke zYa;;

33 ik S (Oa 1)7 Qi = — )
Vxclagze e Vrtxllagagg

c=2%3agze™

Fe >0, p=
) ij

with || < & := max;4; \/% < 1.
For any (p, a1z, a13, aa3) € [0,1] x [—€, €]?, there exists N > 0 such that

f'(nyp, i) >0, Yn > N; f'(n;p, ;) <0, Vn < —N.

This is shown by considering the cases p =0, p =1, and 0 < p < 1 separately; for either case,
the leading terms as k — oo and k — —oo have positive coefficients.

Thus, the minimum points of f lie between —N and N. The compactness of the region
implies that N exists uniformly for all tuples (p, a2, @13, az3) € [0,1] x [=&, £]2. Consequently,
if k =0 and k = ko are the only minimum points of s% 4|z, then [ko| < 2(N +1). Lemma 3.15
implies that Dg(X,T) is finitely-sided for any X € P(3).

Cyclic group of type (5). Similarly, we interpret the group I = (7) as a one-parameter family,
g(k) =~*, and the function s% , becomes

33 4sk 13 23 —s,23 k
ngA(k;) =z>az3e™™ + (2" a13 + 20 ag3 — 2ke " *x*°a;3)e’

12 2sk

11 22 12 - 22 2 _—2s, 22 -
+ (z7 a11 + x%%age + 20 2a12 — 2ke™* (" %a11 + v°%a12) + k*e”*x**a1)e ,

where s # 0; assume that s > 0 without loss of generality. Similarly to the preceding case, we
can interpret s% 4 (k) = c- f(k — k) for a certain k. € R, where

f(n) = " + (2a13p + 2093g — 263(1 — p — g)n)e™"
+ (07 + ¢° + 2002pq — 2(B1p + B2g) (1 — p — @)+ (1 — p — q)*n?)e ™",
with p,¢ >0, p+¢q <1, |ay;|,|51], B3] < & and [B2| < 1, all dependent on ;;, a;j, s, and k..
Similarly to the preceding case, the compactness of the region {(p,q)|p,q > 0,p+q < 1} x
[—&,€]° x [—1,1] implies the existence of a number N > 0, such that |ko| < 2(N +1) if k=0

and k = ko are the only minimum points of s% ,|z. Lemma 3.15 implies that Dg(X,T) is
finitely-sided for any X € P(3).
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Two-generated group of type (1). We interpret the group I' as a two-parameter family,
g(k,1) = vF~L, k.1 € Z. Computation suggests that:

sggA(k:, D) = ay (2?2 (k — k) + 2223 (k — k) (1 — 1) + 2% (1 — 1.)?) + const,

where k., l. depend on a;; and . Since 22233 > (223)2, the level curves of siaA are ellipses
centered at (k.,!.), with same eccentricities dependent on X. If such a level curve surrounds
two points in Z? and excludes all other integer points, its major axis length is bounded by a
constant dependent on X . Therefore, there are only finitely many choices of (ko,ly) € Z?2, such
that (0,0) and (ko,lo) are the only minimum points of s% 4[z2. It follows that DS(X,T) is
finitely-sided for any X € P(3).

Two-generated group of type (4). We interpret the group I' as a two-parameter family,
g(k,1,m) = diag(e*, !, e™), where the domain of g is the plane:

{(k,1,m) € R*|k + 1 +m = 0},
and the preimage of T' is A = Z(r, s,t) @ Z(r', s',t’). The function s% , is given by
($11a11)62k 4 (33220,22) 21 T (1133@33) 2m 4 (21‘23a23>6_k + (2.’1?136113)6_[ + <2$12a12)e—m
— (2 ke) y 20L) | 2meme) |9, o= (kke) 4 9 o= (-1e) 4 9, o= (mome)),

for some constants ¢, ke, le, mc, ai2, a3, and ass dependent on z%/ and a;;. Moreover, ¢ > 0,

loij| < & := max;4; \/%, and ke + 1. +m.=0. Let d =d(k,l, m) represent the Euclidean
distance between (k,l.,m.) and (k,l,m) divided by v/6/2, then:

2(1 — €e? —4ge™¥? + e = f_(d) < 5% (K, 1,m)/c < fy(d) = * +4€e?? +2(1 4 €)e?,

where the lower bound is attained when a;; = —§ and (k — k¢, [ — l.,m —m.) = (—d,d/2,d/2),
while the upper bound is attained when «;; = £ and (k — kc7l le;m —me) = (d,—d/2,—d/2).
Moreover, limg_,o f—(d) = co. For each level curve of s XA the inequality implies that its
diameter D is controlled by its inscribed radius p via f_(D/2) < fi(p). Similarly to the
preceding case, there are only finitely many choices of (kq,lp, mp) € A, such that (0,0,0) and
(ko,lo,mo) are the only minimum points of s% 4[a. It follows that DS(X,T) is finitely-sided
for any X € P(3). O

We now consider the cases when the Dirichlet-Selberg domain DS(X,T) is infinitely-sided
for a generic choice of X € P(3). In the following proofs, we drop the requirement det(A) = 1,
as this condition can be regained by rescaling the matrix A whenever A is positive definite.

Proof of Theorem 2.6 for infinitely-sided cases.

Cyclic group of type (2). We interpret the cyclic group I as a one-parameter family, g(k) = 7*,
where k € 7Z. The function sg(, 4, described in Lemma 3.15, is expressed as a quartic polynomial
in k:

sg( alk) = (x33a11/4)k4 (—1:33@12 + (x33/2 — x23) an) k3

+ (x33a13 + 23390 + (322 — 2% a1 + (x33/4 R a:22) a11) k2
+ (—29533@23 + (2% — 228 ay3 — 2023 a9 + (223 — 22" — 20*H)agy + (213 — 2x12)a11) k
+ (x33a33 + 2%2a99 + 211 + 223 a0s + 22315 + 2:1012@12).
For any X € P(3) and any kg € Z, our goal is to find a positive definite matrix A such that
s%.alk) = E%(k — ko)? + const,

ensuring that k = 0 and k = ko are the only (global) minimum points of s% ,.
The entries a1; and ap2 are determined by comparmg the k* and k3 coefﬁments following
by choosing ass sufficiently large such that ajjase — a2, > 0. Subsequently, the entries a;3 and
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as3 are determined by solving a linear equation system derived from the coefficients of k% and
k', yielding a unique solution. Finally, let ass be sufficiently large so that A is positive definite.
These steps result in a matrix A € Fx. Lemma 3.15 implies that Dg(X,T") is infinitely-sided
for any X € P(3).
Cyclic group of type (4). We interpret the cyclic group I as a one-parameter family, g(k) = 7*,
k € Z. The function sg(y 4 s expressed as:

sgch(k) = a90x22e®* 4 2093223 + 2a132e %% + ay 2 e 2% + const.
For any X € P(3) with 213223 # 0 and any ko € Z, we can find a positive definite matrix A
such that

5?(,,4("/’) _ €2sk _ 2(esko 4 1)€Sk _ 2€sk0 (€Sk° + 1)67516 + e2sk06725k + COTLSt,

similarly to the preceding case. This function has two global minimum points, namely k = 0
and k = kg. Lemma 3.15 implies that Dg(X,T") is infinitely-sided whenever X does not belong
to the proper Zariski closed subset {X = (2¥)~! € P(3)|2'32% = 0}.

Two-generated group of type (2). We interpret the group I' as a two-variable family, g(k,[) =
Vi, (k,1) € Z2. The function ng,A is expressed as

s% a(k,1) = 2% (aga(k — ke)® + 2a12(k — ke) (I — L) + ar1 (I — 1c)?) + const,

and its level curves are ellipses with the center (k.,[.) dependent on z% and ai;j. Unlike the
two-generated groups of type (i), the eccentricities of these ellipses depend on A. Specifically,
for any coprime pair (kg,lo) € Z? and arbitrarily small € > 0, we can choose the matrix A so
that the equation holds:

s% a(k,1) = € (ko(k — ko/2) +lo(l — 10/2))? + (lo(k — ko/2) — ko(l — lo/2))* + const. (3.9)

Entries a11, a12 and age are uniquely determined by comparing the k2, kI and [? coefficients
and guarantee that aj1a20 > a%z. Furthermore, a3 and as3 are uniquely determined by letting
(ke,le) = (ko/2,1p/2). Finally, let ass be sufficiently large so that A is positive definite.

A particular level curve of such s% , has its major axis as the line segment between (0, 0)
and (ko,lp), and its minor axis lengthybe € times the length of the major axis. Since kg and [
are coprime, the ellipse excludes all other points in Z? when e is sufficiently small. By Lemma
3.15, the Dirichlet-Selberg domain DS(X,T") is infinitely-sided for any X € P(3).

Two-generated group of type (3). We interpret the group I' as a two-variable family:

1 —k k2-1
gk,h)=1(0 1 —k |, V(k, 1) € A =A(a,b),
0 0 1
where
A(a,b) = {(k,l) ‘k =z +ayl= % (OLQ(y2 —y) + 2azy + 2by + 2> —:r) , (z,y) € Z}

is a discrete subset of R?. The function s%.4 is expressed as
s a(k,l) = (a112% + 2a122% + agea®®) (k — ke)?
+2(a112% + a192*3) (b — ko) (1 — 1) + (a112%*) (1 — 1.)* + const,

where k. and [, depend on a;; and x4,

We claim that for sufficiently small § > 0, there exists € = €(; X) > 0, such that € = O(5?)
as 0 — 0, and for any (ko,lo) € A with |ko/lp] = 9, there exists a positive definite matrix A
satisfying Equation 3.9.

Comparison of the k2, kl and [? coefficients yields a linear equation system in unknowns
of a1, a1 and ags, which admits a unique solution. Given this solution, the positive definite
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condition ajjaze > a3, holds if

A/ 2233 _ 232
e:e@y=4ﬁ;%$—3—42+owﬁ.

Setting (ke,l.) = (ko/2,10/2) yields a linear equation system in unknowns a3 and ags with an
invertible coefficient matrix, uniquely determining a3 and aoz. Finally, let ass be sufficiently
large so that A is positive definite. For such a matrix A, a particular level curve of s% ,
is an ellipse whose major axis is between (0,0) and (kg,lp), and whose minor axis length is

= O((ko/lp))?) times the length of the major axis.

We address two cases based on whether the entry a of the generator v, is rational. If a € Q,
we assume that a = p/q, where (p,q) are coprime. The first components of points in A take
values in (1/¢)Z, and

A {(ko, lo)lko = 1/q} = {(1/¢; lon))llo(n) = (ala — 1) = 2b)qn + lo(), n € Z},

where ly(g) is a constant depending on a and b. By applying our construction of matrix A
to (1/q,lo(n)), we derive level curves surrounding (0,0) and (1/q,lo(n))- Let 8, = (1/q)/low)
and €, = €(8,); then 6, = O(n~1), and thus €, = O(n=2) as n — co. Elementary computation
implies that the level curve we constructed for (ko,lo) = (1/¢,lo(n)) lies between the lines

1+ 1+q2(l0(n))2€% _ 1:|:(1+O(n72))
2q B 2q '

Thus, it is disjoint from the lines k =2/q and k= —1/q for large n. Moreover, its other
intersection with the line £ = 0 is

lo(n)(l(z)(n) +q %€
Tog2 4 lg(n)e%

]{j:

) =(0,0(n™)),

which can be arbitrarily close to (0,0) for large n. Consequently, the level curve excludes
all other points in A for sufficiently large n. By Lemma 3.15, the Dirichlet-Selberg domain
DS(X,T) is infinitely-sided for any X € P(3).

If a ¢ Q, there are points (k,1) in A such that k is arbitrarily close to 0 while [ is arbitrarily
large. Therefore we can choose points (k;,1;), i =1,2,... inductively, such that the level
curve of s% , we constructed previously for (k;,l;) excludes all points in A\{(0,0)} that are
surrounded by either of the level curves for (k;,(;), j <i. By Corollary 3.16, the Dirichlet-
Selberg domain DS(X,T) is infinitely-sided for any X € P(3).

Two-generated group of type (5). We interpret the group I as a two-variable family:

e —le 0
glk,)=1 0 e * 0|, V() eA=27(t1) ®Z(s,a) CR?
0 0 e?

where (s,t) # (0,0) and a € R. The function s% , is expressed as follows:

sg{,A(k‘, )= e%(auaz?l1 + 20102 4 agex®® + (a1 2'? + a122%?) + 12ar2%?)

—k 13 23 23 —4k 33
+ 2 "(a1327° + agzx®’ + lazx®’) + e Fagzx

We claim that if 223 # 0, then for any (ko,lo) € A where kg # 0, there exists a point A € P(3),
such that:
— A level curve of s% , is connected and passes through (0,0) and (ko, lo).
— The level curve lies between the lines k = 0 and k = ko, and is tangent to these lines at
(0,0) and (ko, o), respectively.
Indeed, the level curve s% ,(k,1) = c is the union of graphs of the following functions:

l=Li(e " ¢) = Lo(e™®*;¢) & /Li(e7F;¢),
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where Ly is linear in e 3% and L, is a degree 6 polynomial in e=*.

We set a;; = 1. The entries a12 and a3 are uniquely determined by setting Lo(1) = 0 and
Lo(e=3k0) = [y. The entries as3 and azz are uniquely determined by setting Li(1) = Li(e~%0) =
0 and depend on ko, lp, ¥, ¢ and age. Under these solutions, det(A) forms a quadratic
polynomial in ¢, with the ¢? coefficient:

(14 ¢k0)? (1 4 ¢2h0)?
4 (eko + e2ko 4 1) 237

Setting ¢ to be the maximum point of det(A), this determinant becomes a quadratic polynomial
in agy, with the a2, coefficient

ko (62k0x232 +(1+ ek0)2 (1 4 €2ko) m229533)
(1+ ek0)2 (1+ €2k0)2 2332

Therefore, A is positive definite when aos is sufficiently large. Moreover, one verifies that ¢t = 1
and t = e~ are the only positive zeroes of L (t), thus the level curve is connected.

We similarly discuss the two cases based on whether ¢/s is rational. If t/s = p/q € Q, where
(p,q) are coprime, the first components of points in A take values in (s/q)Z, and there are
infinitely many points in A N {k = s/q}. The level curve we constructed for such a point (s/q, o)
lies between the lines k = 0 and k = s/q, thus it excludes all points in A other than (0,0) and
(s/q,lo). By Lemma 3.15, the Dirichlet-Selberg domain DS(X,T) is infinitely-sided for any X
not belonging to the proper Zariski closed subset {X = (2¥)~! € P(3)[|2%® = 0}.

If t/s ¢ Q, we can utilize Corollary 3.16 and prove that DS(X,T") is infinitely-sided for any

X not belonging to the aforementioned proper Zariski closed subset, similarly to the proof for
two-generated groups of type (3). O

> 0.

3.6. Proof of Theorem 2.7

We first proof Case (i) of the Theorem, where n is assumed to be even.

Proof of Theorem 2.7, Case (i). Denote the eigenvalues of A; by
)\i,l > 2)\2',71/2 >1> )‘i,n/2+1 > ZAi,TL >0a i= 17"'7ka
and let v;; be the corresponding eigenvector for j=1,...,n. Recall that C’Xi =
span(Vii, ..., Vins2), and Cy = span(vin/a41;-- -, Vi) We claim that there exists an integer
M satisfying the following conditions: )
~ For any real numbers mI > M, i=1,...,k the 2k bisectors Bis(I,A]" .I),
Bis(I,A; ™ .I) are pairwise disjoint.
— For each bisector o among the 2k ones, the center I of the Dirichlet-Selberg domain and
the other (2k — 1) bisectors lie in the same connected component of o€ = P(n)\o.

These claims will ensure that T' = (4} ... ] AM) is Schottky. The first claim follows because
0, VxeCF
lim [|(AF") =4 T C A
m—00 o0, otherwise,

which implies the existence of a positive number M such that for any mzi > M, certain positive
linear combinations of any two among the 2k functions

+
Fm; ~
(AT )X/ =1, i =1, K,

defined on the compact space RP™~!, are positive. Utilizing Lemma 3.6, we deduce that the
2k bisectors

Bis(I, AS™ Iy = (AT™)T.1 — 1)t
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are pairwise disjoint.

To prove our second claim, assume the opposite: there exist bisectors o; and o2 among the
2k bisectors, such that oo and the center I lie in different components of of. Without loss
of generality, suppose that o1 = Bis(A7"*.I,I) and o9 = Bis(A3?.I,I). Fix a point X € oy;
as m — 0o, X and I will be in the same cqmponent of Bis(AT*.I,I)¢. Thus, a real number
m} >my > M exists such that X € Bis(A]"".1,I), contradicting our first claim. U

We proceed to Case (ii), where n is assumed to be odd.

Proof of Theorem 2.7, Case (ii). Assume the opposite that I' = (Aq,..., Ax) < SL(n,R) is
Schottky, and none of the eigenvalues of these generators has an absolute value of 1. Without
loss of generality, we can assume that the center of the Dirichlet-Selberg domain is X = I, after
conjugating these generators.

We extend the notions of attracting and repulsing subspaces:

+ _ — _
Ca,.c = spanc |z, ;1>1(Vij), Cy, ¢ = spanc |x, ;1<1(Viy),

where v; ; € C" is the eigenvector of AT associated with the eigenvalue \; ;. As n is odd, either
dimc(CXi c) > (n+1)/2 or dime(Cy, ¢) > (n +1)/2; assume the former for all ¢ without loss
of generality. We deduce that

Ch cNCxi c\M0} # 2.

On the one hand, for any m € N, the bisectors Bis(A}".I,I) and Bis(A%'.I,I) are disjoint,

following that I' is a Schottky group with a ridge-free Dirichlet-Selberg domain centered at I.
On the other hand, we aim to derive a contradiction by showing that the bisectors

Bis(AT".I,I) and Bis(A5*.I,I) intersect for sufficiently large m € N. Take nonzero vectors

veCl) «NCh ¢, we(Ch cUCH o).
Similarly to the proof of Case (i), we establish that
wH (A7) — Dw, w*((A5. 1)~ — )w > 0,
for sufficiently large m. Furthermore,
VAP DT = ([(AT) VI = (e ()P < (™ 1P - v,

where ¢ represents the restriction of the linear transformation (A7')" to the AT-invariant
subspace C:{l’(c of C™, whose spectral radius is less than 1. Gelfand’s theorem implies that
lim;;, 00 ||¢™]] = 0; a similar assertion holds for As. Thus,

V(AT = Dv, v (AR ) = T)v <0,

for sufficiently large m.
These inequalities imply that the pencil

(AP —1,(A. )~ = 1)

is indefinite for sufficiently large m. Following Lemma 3.6, the bisectors Bis(AT".I,I) and
Bis(A5.I,I) intersect for sufficiently large m, a contradiction. ]
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