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Abstract. We give a complete criterion for when two hyperbolic automorphisms of a tree
generate a free, discrete subgroup. The decision depends only on three geometric invariants:
the translation lengths of the generators and the length of overlap of their axes. This data is
organized using the continued-fraction expansion of the translation-length ratio. We extend
the result to weighted trees, allowing arbitrary positive real translation lengths under local
finiteness. In the irrational case, the exceptional configurations are shown to correspond
precisely to the gap lengths in the three-gap theorem.

1. Introduction

This paper is concerned with the geometry and algebra of free, discrete subgroups generated by
pairs of hyperbolic automorphisms of trees. Our approach is geometric and reduction-based:
we encode a generating pair through their translation lengths and the configuration of their
axes, and seek criteria that determine whether the resulting subgroup is free of rank two and,
in that case, whether it is generated by a Schottky pair.

The classical motivation arises from the theory of Fuchsian and Kleinian groups, i.e. discrete
subgroups of PSL(2,R) and PSL(2,C), which act by isometries on the hyperbolic planes H2

and H3. Two-generator free subgroups (Schottky groups) in this setting can often be detected
by geometric inequalities involving traces of the generating matrices and angles or distances
between their axes; see, e.g. Jørgensen’s inequality [7], which gives a necessary condition for
discreteness, or the sharp length–angle criteria of Rosenberger [12]. While these results are
well-understood in the archimedean setting, the corresponding problem over non-archimedean
fields remains far less explicit.

This motivates the study of analogous phenomena in the realm of trees. When K is a non-
archimedean local field, the group PSL(2, K) acts by isometries on its associated Bruhat–Tits
tree, and questions of discreteness, freeness, and reduction become intertwined with the
geometry of that action. More generally, one can view Aut(X), the automorphism group of a
locally finite tree X, as a combinatorial analogue of Isom(Hn) for the purpose of studying
non-archimedean Schottky groups.

The overarching problem of understanding free discrete tree actions has deep roots in the
study of p-adic groups, combinatorial geometry, and number theory. Such actions play a
central role in the structure of rank-one p-adic Lie groups, where discrete free subgroups
serve as convex-cocompact lattices—often arising as fundamental groups of Mumford curves
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or p-adic Drinfeld modular varieties. A foundational result of Lubotzky [9] asserts that
any finitely generated, torsion-free, discrete subgroup of Aut(X) is automatically free and
Schottky [9, Proposition 1.7], highlighting a rigidity phenomenon: while discreteness forces
freeness in this context, detecting when a given generating pair yields a Schottky subgroup
remains a subtle geometric problem. These issues are closely tied to expansion, spectral theory,
and invariant measures, as developed in Lubotzky’s monograph [10]. Beyond algebraic and
geometric rigidity, Schottky tree actions also serve as uniformizing groups for p-adic analytic
curves such as Mumford curves (see [3]), and their structural and spectral properties govern
the fractal geometry of their limit sets. In joint work with Hubbard [6], the second-named
author showed that the Hausdorff dimension of such limit sets can be computed explicitly
using transfer operators. These connections underscore the need for a precise geometric
criterion describing when a pair of hyperbolic automorphisms generates a Schottky subgroup
of Aut(X). Yet, a precise geometric criterion characterizing when a given pair of hyperbolic
automorphisms generates a free (or Schottky) subgroup is still lacking. With this in mind,
we are interested in the following question.

Question. Let γ1, γ2 ∈ Aut(X) be hyperbolic automorphisms of a locally finite tree X,
with translation lengths m1 and m2, and suppose their axes Aγ1 and Aγ2 intersect. Assume
that the subgroup Γ = ⟨γ1, γ2⟩ is discrete. Under what conditions is Γ free of rank two? If Γ
is free, can one find a Schottky pair γa, γb generating Γ?

This question plays a central role in both classical and p-adic geometric group theory. In
the setting of SL2(K) acting on the Bruhat–Tits tree, Conder [1] developed an algorithmic
reduction procedure using Nielsen moves to determine either that a word is elliptic or that the
pair satisfies a Schottky ping–pong hypothesis. His approach yields a constructive membership
criterion for two-generator free subgroups of SL2(K).

Our aim here is different but complementary. Rather than solving the membership problem,
we work in the general geometric setting of Aut(X) and give a complete structural classification
of when a pair of hyperbolic automorphisms generates a free discrete subgroup, expressed
entirely in terms of translation lengths and the length
(1.1) l = ℓ(Aγ1 ∩ Aγ2),
of intersection of their axes (with l = 0 in the disjoint case). Up to conjugacy, the triple
(m1, m2, l) determines the group and its Nielsen-reduced generating pair. Our main result
shows that Γ is free if and only if a certain explicit condition involving m1, m2, and the
continued-fraction expansion of m2/m1 is satisfied. In particular, for fixed (m1, m2), the
parameter l cleanly separates the free cases from the elliptic ones.

Furthermore, we extend this classification framework to weighted trees, where edge lengths
are arbitrary positive real numbers. In that context, when the ratio m2/m1 is irrational, the
possible non-free values of l form a discrete set in (0, m1 + m2), and we show these values
coincide with the gap lengths appearing in the three-gap theorem [11]. This further highlights
a subtle Diophantine phenomenon governing the boundary of freeness for tree-based Schottky
groups.

Organization. In Section 2, we recall foundational facts about tree automorphisms and
the Nielsen moves used throughout the paper. In Section 3, we define geometric triples and
prove our primary classification result, Theorem 3.3. Section 4 extends this classification
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to weighted trees and identifies a link between axis-intersection lengths and the three-gap
theorem via continued fractions, culminating in Theorem 4.8.

2. Preliminaries

In this section we introduces the basic framework of tree automorphisms and sets the geometric
foundations used throughout the paper. In particular, we recall standard combinatorial
notions such as axes, translation length, and the visual boundary, and describe how hyperbolic
automorphisms act by translations along unique bi-infinite geodesics. We then develop the
Nielsen reduction process, formulated as elementary moves on generator pairs that strictly
decrease the total translation length. This sets up the length-reduction scheme that drives
the main theorems, with Lemma 2.7 establishing the key contraction property under Nielsen
moves.

2.1. Trees and Tree Automorphisms. A tree is a connected, acyclic simple graph X
with vertex set V(X) and edge set E(X). For vertices v, w ∈ V(X), the length of the unique
simple path [v, w] defines the combinatorial distance

(2.1) d(v, w) = ℓ([v, w]).

An automorphism of X is a graph isomorphism g : X → X. The group of all automorphisms
is denoted Aut(X).

Definition 2.2. An element g ∈ Aut(X) is called elliptic if it fixes a vertex, hyperbolic if it
fixes no vertex and no edge (up to inversion), and an inversion if it preserves but flips an
edge.

We focus on inversion-free actions. The following classical facts (due to Serre [13, Ch. I]) will
be used throughout, stated without proof.

Proposition 2.3 (Elliptic case). If g ∈ Aut(X) is elliptic, then it fixes a (possibly degenerate)
subtree Tg ⊂ X. Moreover, for any v ∈ V(X),

(2.4) d(v, g.v) = 2d(v, Tg).

Proposition 2.5 (Hyperbolic case). If g ∈ Aut(X) is hyperbolic, then the minimum dis-
placement

(2.6) mg = min
v∈V(X)

d(v, g.v) ∈ N>0

is achieved exactly along a bi-infinite geodesic Ag, called the axis of g. Moreover,

(2.7) d(v, g.v) = mg + 2d(v, Ag).

Corollary 2.8. Let g ∈ Aut(X) and v ∈ V(X). Then

• g is elliptic or an inversion if and only if d(g−1.v, g.v) ≤ d(v, g.v);

• g is hyperbolic if and only if d(g−1.v, g.v) > d(v, g.v).



4 YUKUN DU AND SA’AR HERSONSKY

Corollary 2.9. If g is elliptic and u is the midpoint of [v, g.v], then Tg ∩ [v, g.v] = {u}. If g
is hyperbolic and w ∈ [v, g.v] satisfies d(v, w) = d(v, g.v) − 1

2d(g−1.v, g.v), then w ∈ Ag and

(2.10) mg = d(g−1.v, g.v) − d(v, g.v).

Definition 2.11. A subgroup G < Aut(X) is discrete if there is a finite subtree T ⊂ X such
that the pointwise stabilizer

(2.12) GT = {g ∈ G | g.v = v ∀ v ∈ V(T )}

is trivial.

Remark 2.13. If G < Aut(X) is finitely generated and discrete, then all vertex stabilizers Gv

are finite and uniformly bounded in size. Throughout we assume all groups are inversion-free
and discrete unless noted.

2.2. Nielsen Moves and Length Reduction. Let Γ = ⟨γ1, γ2⟩ < Aut(X) be generated
by two hyperbolic automorphisms with translation lengths m1, m2. A Nielsen move on the
ordered pair (γ1, γ2) is one of the transformations

(2.14) (γ1, γ2) 7→ (γ−1
1 , γ2), (γ1, γ2) 7→ (γ2, γ1), (γ1, γ2) 7→ (γ1γ2, γ2),

or the inverse of one of these. Such moves generate Aut(F2) and do not change Γ.

We apply these moves in a translation-length-minimizing fashion. Assign a lexicographic
order to length pairs:

(2.15) (m1, m2) < (m′
1, m′

2) if m1 < m′
1 or (m1 = m′

1 and m2 < m′
2).

A Nielsen move is length-reducing if it replaces (γ1, γ2) with (γ′
1, γ′

2) such that

(2.16) (m′
1, m′

2) ≤lex (m1, m2), and often (m′
1, m′

2) < (m1, m2).

Iterating length-reducing moves produces a finite sequence

(2.17) (γ1, γ2) → (γ(1)
1 , γ

(1)
2 ) → · · · → (γ(k)

1 , γ
(k)
2 ),

terminating when no further reduction applies. This process resembles the Euclidean algorithm
(see Section 3) and controls the geometry of axes intersections. The geometric consequences
of this reduction are developed in Section 3, and form the basis for Theorems 3.3 and 4.8.

Remark 2.18. In contrast to PSL(2,R), where trace identities guide length minimization, here
the reduction is entirely combinatorial and encoded by translation lengths and the quantity
ℓ(Aγ1 ∩ Aγ2).

Having established the basic notation and the role of Nielsen transformations in reducing
generating pairs, we now turn to the question posed in the Introduction: how the geometric
data (m1, m2, l) associated to a pair of hyperbolic automorphisms governs the structure of the
subgroup Γ = ⟨γ1, γ2⟩. In the next section, we develop a Euclidean-style reduction algorithm
on geometric triples that leads to a complete classification of when Γ is free of rank two and,
in particular, when it admits a Schottky generating pair.
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3. Axis-Intersection Criteria and Geometric Triples

In this section we introduce the notion of a geometric triple associated to a pair of hyper-
bolic automorphisms and develop the length-reduction algorithm that underlies our main
classification result. By analyzing successive Nielsen moves and tracing the evolution of
translation lengths and intersection data, we reduce any generating pair to one of a few
canonical configurations. This procedure culminates in Theorem 3.3, which gives an explicit
geometric criterion for determining when such a pair generates a free, discrete subgroup and
when it admits a Schottky generating pair. The proof combines combinatorial Nielsen theory
with metric bounds derived from axes geometry in the tree.

To present a streamlined formulation of our answer to the question posed in the introduction,
we first introduce the following normalization

• Without loss of generality, assume m1 ≥ m2.

• If the axes have at least one common edge, E(Aγ1 ∩ Aγ2) ̸= ∅, let [v−, v+] denote this
intersection. In addition, we assume that both γ1 and γ2 translate from v− toward v+ along
[v−, v+].

• If the axes do not share an edge, let [v1, v2] be the unique (possibly degenerate) geodesic
path connecting Aγ1 and Aγ2 , such that v1 ∈ Aγ1 and v2 ∈ Aγ2 . We adopt the convention
that the axes are disjoint in this scenario, even though they may meet at a vertex.

In this setting, the group Γ = ⟨γ1, γ2⟩ is described by the translation lengths m1 = mγ1 ,
m2 = mγ2 , and the length l = ℓ(Aγ1 ∩ Aγ2) of the intersection of the axes. As we will show
below, whether Γ is free of rank 2 is determined by these parameters, closely related to the
continued fraction expansion of the ratio m1

m2
.

3.1. The Main Theorem. To make our claim precise, we define two sequences inductively.
The first is a sequence of positive integers {mi}k+1

i=1 , which is essentially the Euclidean algorithm
for m1 and m2. Start with m1, m2 (where m1 ≥ m2 > 0). For i ≥ 1, as long as mi+1 > 0,
define:

(3.1) qi =
⌊

mi

mi+1

⌋
, mi+2 = mi − qimi+1.

This process terminates at the first index k for which mk+1 = 0; note that mk = gcd(m1, m2).

The second is a corresponding sequence of group elements {γi}k+1
i=1 in Γ. Starting with the

given γ1, γ2, define for i ≥ 1:
(3.2) γi+2 = γiγ

−qi
i+1.

The sequence {γi} is thus defined for i = 1, 2, . . . , k + 1.

We can now state our main classification theorem.

Theorem 3.3. Under the assumptions above, let

(3.4) l := ℓ
(
Aγ1 ∩ Aγ2

)
.

Then Γ = ⟨γ1, γ2⟩ falls into exactly one of the cases (1)-(3) below:
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(1) If l = 0, then Γ is free of rank two; there is a Schottky pair of generators (γa, γb) whose
axes have disjoint edges.

(2) If 0 < l ≤ m1 + m2 − gcd(m1, m2), there are unique integers j, q with
(3.5)
(m1 +m2)−mj +(q −1)mj+1 < l ≤ (m1 +m2)−mj + qmj+1, 1 ≤ j ≤ k −1, 0 ≤ q ≤ qj −1.

(a) If l = (m1 + m2) − mj + qmj+1, then γjγ
−q
j+1 is hyperbolic; set

(3.6) l0 := ℓ(Aγjγ−q
j+1

∩ γj+1.Aγjγ−q
j+1

).

i) If l0 ≥ mj−(q+1)mj+1
2 then Γ is not free: it is generated by a hyperbolic element

γa and an elliptic element γb. The axis Aγa and fixed subtree Tγb are disjoint.

ii) If l0 < mj−(q+1)mj+1
2 then Γ is free of rank two: there is a Schottky pair (γa, γb)

whose axes Aγa and Aγb are disjoint.

(b) If l < (m1 + m2) − mj + qmj+1 then Γ is free of rank two: there is a Schottky pair
(γa, γb) whose axes Aγa and Aγb intersect with v+ as an endpoint.

(3) If l > m1 + m2 − gcd(m1, m2), then Γ is not free: it is generated by a hyperbolic element
γa and an elliptic element γb. The axis Aγa and fixed subtree Tγb intersect with v+ as an
endpoint are disjoint.

The generating pair (γa, γb), their translation lengths, and the relevant intersection-length /
minimum-distance data are summarized in Table 3.7 below.

Case Generators (γa, γb) ma mb Relation ℓ(Aγa ∩ Aγb), d(Aγa , Aγb),
ℓ(Aγa ∩ Tγb), or d(Aγa , Tγb)

(1) (γ1, γ2) m1 m2 Disjoint axis-axis ≥ 0
(2a)(i) (γj+1, γjγ−q−1

j+1 )
mj+1

Elliptic Disjoint axis-tree (mj − (q + 1)mj+1)/2

(2a)(ii) mj − (q + 1)mj+1
−2l0

Disjoint axis-axis l0

(2b) (γj+1, γjγ−q
j+1) mj − qmj+1 Meeting axis-axis l − m1 − m2

+mj − (q − 1)mj+1
(3) (γk, γk+1) mk Elliptic Meeting axis-tree l − m1 − m2 + mk

Table 3.7. Case summary for Γ = ⟨γ1, γ2⟩. The entry ‘elliptic’ in the mb
column indicates γb is elliptic and does not have a translation length.

Remark 3.8 (Tree-Version of the Shimizu Criterion). The axis-overlap threshold stated in
Theorem 3.3 refines a classical qualitative principle: that two hyperbolic automorphisms
of a tree generate a free group provided their axes do not overlap “too much.” A precise
formulation of this principle appears as a consequence of Tits’ ping-pong arguments in Serre’s
exposition [13]: if g, h ∈ Aut(X) are hyperbolic and
(3.9) ℓ(Ag ∩ Ah) < min{ℓ(g), ℓ(h)},

then ⟨g, h⟩ is a free rank-two subgroup of Aut(X). This may be viewed as a tree-theoretic
analog of the classical axis-separation criteria for Schottky-type subgroups in Kleinian group
theory (often discussed under the heading of a Shimizu lemma, not to be confused with
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Shimizu’s inequality for parabolic elements). Our Theorem 3.3 sharpens this picture in the
simplicial setting: once the continued-fraction reduction {γi} of (3.2) is taken into account,
the critical threshold for the original pair (γ1, γ2) turns out to be the precise value

(3.10) ℓ(Aγ1 ∩ Aγ2) = m1 + m2 − gcd(m1, m2),

with elliptic behavior forced exactly when this bound is exceeded. Thus, the present result
furnishes a quantitative completion of the classical axis-overlap criterion for rank-two free
subgroups in Aut(X).

3.2. Geometric Triples for Generating Pairs. Before proving the theorem, we establish
some further notions for a clearer description.

Definition 3.11. Let X be a tree and let γ1, γ2 ∈ Aut(X) be hyperbolic automorphisms
that generate a discrete subgroup. Let m1, m2 > 0 be their translation lengths, and let
l = ℓ(Aγ1 ∩ Aγ2) be the length of the intersection of their axes. The triple (l, m1, m2) is called
the geometric triple of the generating pair (γ1, γ2).

If we assume m1 ≥ m2, the definition guarantees that the geometric triple (l, m1, m2) of a
hyperbolic generating pair satisfies exactly one of the following three conditions:

(I) l ≥ m2.

(II) 0 < l < m2.

(III) l = 0.

Having established the possible cases for the geometric triple, we now prove that the group
Γ = ⟨γ1, γ2⟩ is automatically Schottky in two of the scenarios.

Proposition 3.12 (cf. [1], Proposition 3.4). Let (γ1, γ2) be a pair of hyperbolic automorphisms
with translation lengths m1 ≥ m2, and suppose its geometric triple (l, m1, m2) falls in either
case (II) or (III). Then, Γ = ⟨γ1, γ2⟩ is free and discrete, and (γ1, γ2) is a pair of Schottky
generators.

Proof. We proceed by constructing explicit fundamental domains for the action of Γ on X.

Case (II): 0 < l < m2. Recall that we denoted the intersection of the axes by [v−, v+], and
assumed without loss of generality that both γ1 and γ2 translate from v− toward v+. We
denote four edges as follows (see Fig. 3.13):

• For i = 1, 2, let e−
i be the edge in Aγi

\ [v−, v+] that is adjacent to v−.

• For i = 1, 2, define e+
i = γi.e

−
i .



8 YUKUN DU AND SA’AR HERSONSKY

Figure 3.13. The fundamental domain in case (II), where we set l = 2,
m1 = 3, and m2 = 5. Irrelevant vertices and edges are omitted. Edges not in
the fundamental domain are dashed.

Case (III): l = 0. In this scenario we denoted the unique (possibly degenerate) path
connecting the two axes by [v1, v2], where vi ∈ V(Aγi

) for i = 1, 2. We denote the edges
differently (see Fig. 3.14):

• For i = 1, 2, let e−
i be the edge in [γ−1

i .vi, vi] adjacent to vi.

• For i = 1, 2, define e+
i = γi.e

−
i .

Figure 3.14. The fundamental domain in case (III), where we set m1 = 2,
and m2 = 3.

In either case, the automorphism γi translates e−
i to e+

i , and the four edges e+
i and e−

i are
disjoint from the edge sets E([v+, v−]) or E([v1, v2]). Define H+

i (and H−
i ) for i = 1, 2 to

be the connected component of X \ {e+
i } (X \ {e−

i }, respectively) that does not meet the
specified path [v+, v−] or [v1, v2]. Then the subtrees H±

i are non-empty and pairwise disjoint,
satisfying the Ping-Pong condition:
(3.15) γi.(X \ H−

i ) = e+
i ∪ H+

i , γ−1
i .(X \ H+

i ) = e−
i ∪ H−

i , i = 1, 2.

Let Y be the connected set of vertices and edges, determined by its edge set
(3.16) E(Y) = E(X) \ (E(H+

1 ∪ H−
1 ∪ H+

2 ∪ H−
2 ) ∪ {e+

1 , e+
2 }),

and maximal subtree Y0 ⊂ Y , where
(3.17) E(Y0) = E(X) \ (E(H+

1 ∪ H−
1 ∪ H+

2 ∪ H−
2 ) ∪ {e+

1 , e+
2 , e−

1 , e−
2 }).

By the Ping-Pong Lemma, Γ = ⟨γ1, γ2⟩ is a Schottky group with respect to generators γ1 and
γ2 and the fundamental domain Y . The group Γ is thus discrete and free of rank 2.

□
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If the geometric triple (l, m1, m2) is in case (I), we apply a Nielsen transformation to replace
(γ1, γ2) by a new generating pair (γ1γ

−1
2 , γ2), and consider an associated triple. Define the

candidate triple algebraically as:

(3.18) (l′, m′
1, m2) = (l − m2, m1 − m2, m2).

This candidate triple (l′, m′
1, m2) necessarily satisfies one of the following conditions:

(I) l′ ≥ min(m′
1, m2) and m′

1 > 0,

(II) l′ < min(m′
1, m2) and l′ > 0,

(III) m′
1 > 0 and l′ = 0, or

(IV) m′
1 = 0.

We note that the first three cases are analogous to our original classification, possibly after
swapping m′

1 with m2. The case (IV) is new.

Under specific conditions, this candidate triple indeed realizes itself as the geometric triple
for the new generating pair.

Proposition 3.19 (cf. [1], Proposition 3.5, Case (2)(ii)). Suppose the geometric triple
(l, m1, m2) is in case (I), and its associated candidate triple (l′, m′

1, m2) is in case (I) or (II).
Then, the element γ1γ

−1
2 is hyperbolic. In addition, the candidate triple (l′, m′

1, m2) is the
geometric triple of the new generating pair (γ1γ

−1
2 , γ2), with v+ ∈ V(Aγ2 ∩ Aγ1γ−1

2
) as an

endpoint.

Proof. First we establish the hyperbolicity of γ1γ
−1
2 with the predicted translation length.

Refer to Fig. 3.21, the inclusion v+ ∈ V(Aγ1 ∩ Aγ2) implies that γ−1
1 .v+ ∈ V(Aγ1); by the

assumption l′ = l − m2 > 0, γ−1
2 .v+ ∈ V(Aγ1) as well. Since γ1 and γ2 translate toward the

same direction, the distance between the latter two points is

(3.20) d(γ−1
1 .v+, γ−1

2 .v+) = d(v+, γ−1
1 .v+) − d(v+, γ−1

2 .v+) = m1 − m2.

Figure 3.21. Generator reduction from the geometric triple (l, m1, m2) =
(3, 5, 2) to (l′, m′

1, m2) = (1, 3, 2). This figure describes a reduction to case (II);
a figure for case (I) is analogous and is left to the reader.
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Denote the path P = [γ−1
1 .v+, γ−1

2 .v+] and apply the automorphisms γ1 and γ2 to it:

• Since P ⊂ Aγ1 , the automorphism γ1 translates P to a path [v+, γ1γ
−1
2 .v+]. The length of

this translated path is again m1 − m2, and the path emanates from v+ to γ1γ
−1
2 .v+ in the

positive direction along Aγ1 .

• Since l − m2 > 0 is strict, the edge in E(P ) adjacent to γ−1
2 .v+ is contained in Aγ2 . The

automorphism γ2 translates P to a path [v+, γ2γ
−1
1 .v+]. The length of this translated path

is also m1 − m2, while it emanates from v+ in the negative direction along Aγ1 ∩ Aγ2 .

This configuration implies that the points γ1γ
−1
2 .v+ and γ2γ

−1
1 .v+ lie on different directions

initiating from v+, specifically:
(3.22) d(γ1γ

−1
2 .v+, γ2γ

−1
1 .v+) = 2(m1 − m2) > m1 − m2 = d(v+, γ1γ

−1
2 .v+).

By Corollaries 2.8 and 2.9, this inequality confirms that γ1γ
−1
2 is hyperbolic with translation

length m1 − m2.

Next, we derive the two endpoints of the intersection Aγ2 ∩ Aγ1γ−1
2

to confirm the geometric
triple and the inclusion v+ ∈ V(Aγ1γ−1

2
). We know from our first argument that the path

[v+, γ1γ
−1
2 .v+] ⊂ Aγ1γ−1

2
and [v+, γ1γ

−1
2 .v+]∩Aγ2 = {v+}, establishing that v+ is one endpoint

of the intersection Aγ2 ∩ Aγ1γ−1
2

. To obtain the other endpoint, let j ≥ 0 be the smallest
natural number such that j(m1 − m2) > l − m1. This condition, as illustrated in Fig. 3.21,
ensures that
(3.23) γ−1

1 (γ2γ
−1
1 )j.v+ ∈ V(Aγ1 \ Aγ2), while γ−1

1 (γ2γ
−1
1 )j−1.v+ ∈ V(Aγ1 ∩ Aγ2).

(Note that for j = 0, we interpret γ−1
1 (γ2γ

−1
1 )−1.v+ as γ−1

2 .v+, which lies in Aγ1 ∩ Aγ2 .)

Recall that v− is the other endpoint of Aγ1 ∩ Aγ2 . The inclusions above imply that
(3.24) [γ−1

1 (γ2γ
−1
1 )j.v+, γ−1

1 (γ2γ
−1
1 )j−1.v+] ∩ Aγ2 = [v−, γ−1

1 (γ2γ
−1
1 )j−1.v+].

Translating this configuration by γ2 yields:
(3.25) [(γ2γ

−1
1 )j+1.v+, (γ2γ

−1
1 )j.v+] ∩ Aγ2 = [γ2.v

−, (γ2γ
−1
1 )j.v+].

Note that [(γ2γ
−1
1 )j+1.v+, (γ2γ

−1
1 )j.v+] ⊂ Aγ1γ−1

2
; the result above identifies γ2.v

− as the other
endpoint of Aγ2 ∩ Aγ1γ−1

2
. Then, the length of this intersection is computed as

(3.26) ℓ(Aγ2 ∩ Aγ1γ−1
2

) = d(γ2.v
−, v+) = d(v−, v+) − d(v−, γ2.v

−) = l − m2 = l′.

This concludes our claim that the candidate triple (l′, m′
1, m2) is indeed the geometric triple

for the generating pair (γ1γ
−1
2 , γ2).

□

Proposition 3.27 (cf. [1], Proposition 3.5, Case (2)(iii)). Suppose the geometric triple
(l, m1, m2) is in case (I) and its associated candidate triple (l′, m′

1, m2) is in case (III): l′ = 0
and m′

1 > 0. Let l0 = ℓ(Aγ1 ∩ γ2.Aγ1). Then:

• If l0 ≥ m1−m2
2 , then γ1γ

−1
2 is elliptic. Furthermore, the axis Aγ2 and the fixed tree Tγ1γ−1

2

are disjoint, with d(Aγ2 , Tγ1γ−1
2

) = m1−m2
2 .
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• If l0 < m1−m2
2 , then γ1γ

−1
2 is hyperbolic. Furthermore, the geometric triple of Γ with respect

to the new generating pair (γ1γ
−1
2 , γ2) is (0, m1 − m2 − 2l0, m2), with the minimum distance

d(Aγ2 , Aγ1γ−1
2

) = l0.

Proof. As established in the proof of Proposition 3.19, the path γ1.P = [v+, γ1γ
−1
2 .v+] has

length m1 − m2 and emanates from v+ to γ1γ
−1
2 .v+ in the positive direction along Aγ1 . The

length of γ2.P = [v+, γ2γ
−1
1 .v+] is also m1 − m2, while the condition l = m2 implies that γ2.P

does not follow the negative direction along Aγ1 ∩ Aγ2 when emanating from v+. Therefore,
[v+, γ2γ

−1
1 .v+] either emanates from v+ in a direction different from those in Aγ1 ∪ Aγ2 , or

shares common edges with [v+, γ1γ
−1
2 .v+].

Notice that γ2γ
−1
1 .v+ ∈ V(γ2.Aγ1), while the condition l = m2 implies that γ1γ

−1
2 .v+ =

γ1.v
− ∈ V(Aγ1). On the other hand, γ2.v

+ ∈ V(γ2.Aγ1) and [v+, γ2.v
+] ⊂ Aγ2 \ Aγ1 , hence v+

is an endpoint of the intersection Aγ1 ∩ γ2.Aγ1 . It follows that
(3.28) ℓ(γ1.P ∩ γ2.P ) = min(l0, m1 − m2),
and
(3.29) d(γ1γ

−1
2 .v+, γ2γ

−1
1 .v+) = 2(m1 − m2 − ℓ(γ1.P ∩ γ2.P )) = 2 max(0, m1 − m2 − l0).

We continue by discussing the two cases claimed in the proposition.

Case (i): l0 ≥ m1−m2
2 . In this case, the distance

(3.30) d(γ1γ
−1
2 .v+, γ2γ

−1
1 .v+) = 2 max(0, m1 − m2 − l0) ≤ m1 − m2 = d(v+, γ1γ

−1
2 .v+),

thus Corollary 2.8 implies that γ1γ
−1
2 is elliptic.

Figure 3.31. An elliptic reduction: the geometric triple (l, m1, m2) = (2, 6, 2)
yields a candidate triple in case (III) with l0 = 2. The element γ1γ

−1
2 is elliptic,

and a vertex u fixed by it is marked.

Corollary 2.9 further implies that [v+, γ1γ
−1
2 .v+] intersects with Tγ1γ−1

2
at the midpoint u,

thus

(3.32) d(Aγ2 , Tγ1γ−1
2

) = d(v+, u) = 1
2d(v+, γ1γ

−1
2 .v+) = m1 − m2

2 .
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Case (ii): l0 < m1−m2
2 . First, we establish the hyperbolicity: the distance

(3.33) d(γ1γ
−1
2 .v+, γ2γ

−1
1 .v+) = 2(m1 − m2 − l0) > m1 − m2 = d(v+, γ1γ

−1
2 .v+),

thus Corollary 2.8 implies that γ1γ
−1
2 is hyperbolic, and Corollary 2.9 implies that the

translation length
(3.34) mγ1γ−1

2
= d(γ1γ

−1
2 .v+, γ2γ

−1
1 .v+) − d(v+, γ1γ

−1
2 .v+) = m1 − m2 − 2l0.

Figure 3.35. A hyperbolic reduction: the geometric triple (l, m1, m2) =
(2, 6, 2) yields a candidate triple in case (III) with l0 = 1. The new element
γ1γ

−1
2 is hyperbolic, and its axis is disjoint from Aγ2 .

We now determine the geometric triple by considering the positional relation between Aγ2

and Aγ1γ−1
2

. Let w be the closest point projection of v+ to Aγ1γ−1
2

. By Corollary 2.9,

(3.36) d(v+, w) = d(v+, γ1γ
−1
2 .v+) − 1

2d(γ1γ
−1
2 .v+, γ2γ

−1
1 .v+) = l0.

This shows our claim if l0 > 0. Otherwise, the condition l0 = 0 implies that w = v+, and the
property of hyperbolic automorphisms implies that
(3.37) [v+, γ1γ

−1
2 .v+] ∪ [v+, γ2γ

−1
1 .v+] ⊂ Aγ1γ−1

2
.

As we have shown, neither [v+, γ1γ
−1
2 .v+] nor [v+, γ2γ

−1
1 .v+] emanates from v+ along Aγ2 .

Therefore Aγ2 ∩ Aγ1γ−1
2

= {v+}, which also yields our desired conclusion.

□

Proposition 3.38. Suppose the geometric triple (l, m1, m2) is in case (I) and its associated
candidate triple (l′, m′

1, m2) is in case (IV): m′
1 = 0. Then γ1γ

−1
2 is elliptic. Furthermore, the

intersection Aγ2 ∩ Tγ1γ−1
2

has length l′, with v+ as an endpoint.

Proof. We first derive the ellipticity of γ1γ
−1
2 . The condition m′

1 = 0 implies m1 = m2. Since
the original triple (l, m1, m2) is in case (I), the resulting relation l ≥ m1 = m2 implies that
(3.39) γ−1

1 .v+, γ−1
2 .v+ ∈ V(Aγ1 ∩ Aγ2), d(γ−1

1 .v+, v+) = m1 = d(γ−1
2 .v+, v+).

Since γ1 and γ2 translate toward the same direction, γ−1
1 .v+ = γ−1

2 .v+, which implies
γ1γ

−1
2 .v+ = v+; see Fig. 3.40.
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Figure 3.40. An elliptic reduction: the geometric triple (l, m1, m2) = (3, 2, 2)
yields a candidate triple in case (IV). The new element γ1γ

−1
2 is elliptic, and

the path [γ1.v
−, v+] is fixed.

This fixed point demonstrates the ellipticity of γ1γ
−1
2 .

Next, we obtain the two endpoints of Aγ2 ∩Tγ1γ−1
2

to confirm the intersection length. Let e+ be
the edge in E(Aγ2 \Aγ1) that is incident with v+. Since γ−1

1 .e+ /∈ E(Aγ2) and γ−1
2 .e+ ∈ E(Aγ2),

γ−1
1 .e+ ≠ γ−1

2 .e+, which further implies e+ ̸= γ1γ
−1
2 .e+. As we have shown earlier, e+ and

γ1γ
−1
2 .e+ share the vertex v+, confirming that v+ is one endpoint of Aγ2 ∩ Tγ1γ−1

2
.

For a similar reason, if we let e− be the edge in E(Aγ2 \ Aγ1) incident with v−, then

(3.41) γ1.e
− ̸= γ2.e

−, γ1.e
− ∩ γ2.e

− = γ2.v
−.

Writing γ1.e
− as (γ1γ

−1
2 ).(γ2.e

−), we observe that γ2.v
− is the other endpoint of Aγ2 ∩ Tγ1γ−1

2
.

Consequently,

(3.42) ℓ(Aγ2 ∩ Tγ1γ−1
2

) = d(v+, γ2.v
−) = d(v+, v−) − d(v−, γ2.v

−) = l − m2 = l′.

□

3.3. Proof of Theorem 3.3. Let (γ1, γ2) be a pair of hyperbolic automorphisms generating
a discrete subgroup ⟨γ1, γ2⟩, and (l, m1, m2) be the associated geometric triple. We apply
Nielsen transformations to the generating pair, and reduce the geometric triple simultaneously,
following the rule (cf. [1], Algorithm 4.1):

• If m1 < m2, replace (γ1, γ2) with (γ2, γ1), and (l, m1, m2) with (l, m2, m1).

• If m1 ≥ m2 and the triple satisfies case (I), replace (γ1, γ2) with (γ1γ
−1
2 , γ2), and (l, m1, m2)

with (l − m2, m1 − m2, m2).

• Terminate the reduction procedure if m1 ≥ m2 and the triple satisfies case (II), (III), or
(IV).

The reduction resembles the Euclidean division algorithm and thus always terminates.

Lemma 3.43. Define the sequences {mi}k+1
i=1 and {qi}k−1

i=1 as in the beginning of Section 3.
Starting with the triple (l, m1, m2), m1 ≥ m2, the change of the two translation lengths in the
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triple agrees with the Euclidean algorithm before termination:
(m1, m2) → (m1 − m2, m2) → · · · → (m1 − q1m2, m2) = (m3, m2)

→ (m2, m3) → (m2 − m3, m3) → · · · → (m2 − q2m3, m3) = (m4, m3)
...

→ (mk−1, mk) → (mk−1 − mk, mk) → · · · → (mk−1 − qk−1mk, mk) = (mk+1, mk)
→ (mk, mk+1) = (gcd(m1, m2), 0).

(3.44)

Denote the sequence of triples occurring in this algorithm by {(l(n), m
(n)
1 , m

(n)
2 )}N

n=0, so
(l(0), m

(0)
1 , m

(0)
2 ) = (l, m1, m2). Then for any state index n ≥ 0, the triple (l(n), m

(n)
1 , m

(n)
2 )

satisfies

(3.45) l(n) − m
(n)
1 − m

(n)
2 = l − m1 − m2.

Furthermore, the algorithm terminates if and only if one of the following occurs:

• The algorithm terminates in case (II) or (III) if l(n) < m
(n)
2 for a certain index n. Specifically,

it terminates in case (III) if l(n) = 0; otherwise, it terminates in case (II).

• If the condition l(n) ≥ m
(n)
2 persists until the final state (l(N), m

(N)
1 , m

(N)
2 ) = (l − m1 − m2 +

gcd(m1, m2), gcd(m1, m2), 0) occurs, the algorithm terminates in case (IV).

The lemma is clear regarding the description of the algorithm and the four cases for the
geometric triple. We now take a closer look at the algorithm based on this lemma:

Proposition 3.46. Let (l, m1, m2) be a geometric triple with m1 ≥ m2, and define the
sequences {mi}k+1

i=1 and {qi}k−1
i=1 as in the beginning of Section 3. The following cases exhaust

the possible outcomes of the reduction algorithm:

• If l = 0, the algorithm terminates in case (III) without any reduction steps.

• If 0 < l < m2, the algorithm terminates in case (II) without any reduction steps.

• If m2 < l < m1 + m2 − gcd(m1, m2), there are unique integers j, q with
(3.47)
(m1 +m2)−mj +(q −1)mj+1 < l ≤ (m1 +m2)−mj + qmj+1, 1 ≤ j ≤ k −1, 0 ≤ q ≤ qj −1.

– If l = (m1 + m2) − mj + qmj+1, the algorithm terminates in case (III) after reduction.

– If l < (m1 + m2) − mj + qmj+1, the algorithm terminates in case (II) after reduction.

• If l ≥ (m1 + m2) − gcd(m1, m2), the algorithm terminates in case (IV) after reduction.

Proof. Before giving the proof, we observe that the difference l(n) − min(m(n)
1 , m

(n)
2 ) is non-

increasing. The algorithm continues whenever l(n) − min(m(n)
1 , m

(n)
2 ) is non-negative, and

terminates when it becomes negative, possibly after a final swap of m
(n)
1 and m

(n)
2 .

The proof for the first two outcomes is clear. If l ≥ m1 + m2 − gcd(m1, m2), then before the
last step of the Euclidean algorithm, we have translation lengths
(3.48) m

(N−1)
1 = m

(N−1)
2 = gcd(m1, m2).
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By Lemma 3.43,
(3.49) l(N−1) = l − m1 − m2 + 2 gcd(m1, m2) ≥ gcd(m1, m2).
This inequality together with our observation implies that the algorithm continues until the
end of the Euclidean division algorithm for (m1, m2). By Lemma 3.43, this corresponds to a
termination in case (IV).

Suppose now the following inequality holds for integers 1 ≤ j ≤ k − 1 and 0 ≤ q ≤ qj − 1:
(3.50) (m1 + m2) − mj + (q − 1)mj+1 < l ≤ (m1 + m2) − mj + qmj+1.

As in Lemma 3.43, we consider two consecutive states for the translation lengths in the
algorithm:

(3.51) (m(n)
1 , m

(n)
2 ) = (mj − qmj+1, mj+1), (m(n+1)

1 , m
(n+1)
2 ) = (mj − (q + 1)mj+1, mj+1).

The corresponding quantity l(n) is

(3.52) l(n) = l − m1 − m2 + m
(n)
1 + m

(n)
2 = l − m1 − m2 + mj − (q − 1)mj+1.

The inequality for l implies 0 < l(n) ≤ mj+1. Together with our observation, this relation
implies one of the followings:

• If 0 < l(n) < mj+1, 3.43 implies that the triple (l, m1, m2) terminates in case (II) at the
n-th state.

• If l(n) = mj+1, the triple (l, m1, m2) terminates in case (III) at the (n + 1)-th state.

□

Proof of Theorem 3.3. Perform the algorithm for the generating pair (γ1, γ2) and the associ-
ated geometric triple (l, m1, m2) as described at the beginning of this subsection. Parallel to
the transformation of (m1, m2) described in Lemma 3.43, the generating pair transforms as
follows:

(γ1, γ2) → (γ1γ
−1
2 , γ2) → · · · → (γ1γ

−q1
2 , γ2) = (γ3, γ2)

→ (γ2, γ3) → (γ2γ
−1
3 , γ3) → · · · → (γ2γ

−q2
3 , γ3) = (γ4, γ3)

...
→ (γk−1, γk) → (γk−1γ

−1
k , γk) → · · · → (γk−1γ

−qk−1
k , γk) = (γk+1, γk)

→ (γk, γk+1).

(3.53)

We similarly denote this sequence of generating pairs by (γ(n)
1 , γ

(n)
2 ). By Proposition 3.19, the

candidate triple (l(n), m
(n)
1 , m

(n)
2 ) is the geometric triple for the generating pair (γ(n)

1 , γ
(n)
2 ),

except for the final step that reduces the triple to cases (III) or (IV). We will discuss the
outcome of the algorithm as described in Proposition 3.46.

Termination in case (II) or (III) without reduction. If the algorithm terminates
without reduction steps, then l < m2. Proposition 3.12 proves that Γ is free and that (γ1, γ2)
is a pair of Schottky generators. When l = 0, this corresponds to case (1) in Theorem 3.3.
When 0 < l < m2, it is straightforward to check that the pair corresponds to a specific
instance of case (2b) with j = 1 and q = 0.
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Termination in case (II) after reduction. If the reduction terminates at a candidate
triple in case (II), Proposition 3.46 shows that l satisfies the inequality
(3.54) (m1 + m2) − mj + (q − 1)mj+1 < l < (m1 + m2) − mj + qmj+1,

for certain 1 ≤ j ≤ k − 1 and 0 ≤ q ≤ qj − 1, except for (j, q) = (1, 0) discussed earlier.
Proposition 3.46 further implies that the algorithm terminates at the geometric triple

(3.55) (l(n), m
(n)
1 , m

(n)
2 ) = (l − m1 − m2 + mj − (q − 1)mj+1, mj − qmj+1, mj+1)

of the generating pair (γb, γa) = (γ(n)
1 , γ

(n)
2 ) = (γjγ

−q
j+1, γj+1). The Schottky property for the

generating pair is guaranteed by Proposition 3.12, and the translation lengths ma, mb and
the intersection length ℓ(Aγa ∩ Aγb) are derived from the geometric triple (l(n), m

(n)
1 , m

(n)
2 ).

Proposition 3.19 also guarantees that v+ remains as an endpoint of the axes intersection after
each reduction step, hence v+ is an endpoint of Aγa ∩ Aγb . This corresponds to case (2b) in
Theorem 3.3.

Termination in case (III) after reduction. If the reduction terminates at a candidate
triple in case (III), Proposition 3.46 shows that
(3.56) l = (m1 + m2) − mj + qmj+1

for certain 1 ≤ j ≤ k − 1 and 0 ≤ q ≤ qj − 1, except for (j, q) = (k − 1, qk−1 − 1). The
algorithm terminates at the candidate triple

(3.57) (l(n+1), m
(n+1)
1 , m

(n+1)
2 ) = (0, mj − (q + 1)mj+1, mj+1)

of the generating pair (γb, γa) = (γ(n+1)
1 , γ

(n+1)
2 ) = (γjγ

−q−1
j+1 , γj+1).

From the description of the algorithm, the preceding generating pair is (γ(n)
1 , γ

(n)
2 ) =

(γjγ
−q
j+1, γj+1), with the geometric triple (l(n), m

(n)
1 , m

(n)
2 ) = (mj+1, mj − qmj+1, mj+1) in case

(I). By Proposition 3.27, the nature of the subsequent generating pair (γb, γa) = (γ(n+1)
1 , γ

(n+1)
2 )

is decided by the length l0 = ℓ(Aγjγ−q
j+1

∩ γj+1.Aγjγ−q
j+1

):

• If l0 ≥ mj−(q+1)mj+1
2 , Proposition 3.27 shows that γb = γjγ

−q−1
j+1 is elliptic, and distance

d(Aγa , Tγb) = d(Aγj+1 , Tγjγ−q−1
j+1

) = mj−(q+1)mj+1
2 . This corresponds to case (2a)(i) in Theorem

3.3.

• If l0 < mj−(q+1)mj+1
2 , Proposition 3.27 shows that γb = γjγ

−q−1
j+1 is hyperbolic, with trans-

lation length mb = mγjγ−q−1
j+1

= mj − (q + 1)mj+1 − 2l0, and distance d(Aγa , Aγb) =
d(Aγj+1 , Aγjγ−q−1

j+1
) = l0. This corresponds to case (2a)(ii) in Theorem 3.3.

Termination in case (IV). If the reduction terminates at a candidate triple in case (IV),
Proposition 3.46 shows that l ≥ m1 + m2 − gcd(m1, m2), and the algorithm terminates at
the generating pair (γa, γb) = (γ(N)

1 , γ
(N)
2 ) = (γk, γk+1), corresponding to the candidate triple

(l(N), m
(N)
1 , m

(N)
2 ) = (l −m1 −m2 +gcd(m1, m2), gcd(m1, m2), 0). Proposition 3.38 shows that

γk+1 is elliptic, and the length ℓ(Aγk
∩ Tγk+1) = l(N) = l − m1 − m2 + mk. Proposition 3.19

shows that v+ remains as an endpoint of the axes intersection before the last reduction step,
and Proposition 3.38 shows that it remains as an endpoint of the axis-tree intersection at the
end. This corresponds to case (3) in Theorem 3.3 if the inequality is strict. When equality
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holds in the inequality, l satisfies the condition for case (2a) with (j, q) = (k − 1, qk−1 − 1).
In this situation, the quantity

(3.58) mj − (q + 1)mj+1

2 = mk−1 − qk−1mk

2 = 0,

thus case (2a)(i) in Theorem 3.3 applies, with the correct generators (γk, γk−1γ
−qk−1
k ) =

(γk, γk+1) and correct axis-tree distance d = 0.

This exhaustive case analysis completes the proof of the theorem.

Theorem 3.3

4. Weighted Trees

In this section we extend our classification to weighted trees, where translation lengths are
allowed to be arbitrary positive real numbers. We prove an analogue of Theorem 3.3 in
this setting, with a dichotomy governed by the rational or irrational nature of the ratio
m2/m1. In the irrational case, the exceptional intersection lengths forming non-free subgroups
constitute a discrete subset of (0, m1 + m2) and are shown to coincide with the gap lengths
appearing in the three-gap theorem. The analysis adapts the Nielsen reduction procedure to
the weighted metric setting and exploits recurrence properties of continued fractions, leading
to Theorem 4.8.

We now broaden our scope from metric trees (where every edge has length 1) to the more
general setting of weighted trees. This allows us to consider automorphism groups of a wider
class of geometric objects.

Definition 4.1. Let X be a (combinatorial) tree and let
(4.2) w : E(X) → R>0

be a function assigning a positive real number w(e) to each edge e. The pair (X, w) is called
a weighted tree.

We can metricize the tree (X, w) by regarding the weight w(e) as the length of each edge
e ∈ E(X):

Definition 4.3. The length of a geodesic path P , denoted by ℓ(P ), is the sum of the weights
of its constituent edges. This induces a natural metric on the vertex set, d(v, w) = ℓ([v, w]).

It is useful to consider the full metric realization of the weighted tree:

Definition 4.4. The geometric realization Real(X, w) of a (symmetric directed) weighted
tree is the metric graph obtained by identifying each combinatorial edge e ∈ E(X) with a
closed interval of length w(e) and gluing at vertices in the obvious way:

(4.5) Real(X, w) =
V(X) ⊔

 ⊔
e∈E(X)

e × [0, w(e)]
 / ∼,
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where the equivalence relation ∼ identifies, for each edge e ∈ E(X), the point e × {0} with
αe and the point e × {w(e)} with ωe.

Definition 4.6. A (metric) automorphism of the weighted tree (X, w) is an isometry
(4.7) g : Real(X, w) → Real(X, w)
of the metric space Real(X, w). The group formed by the automorphisms is denoted by
Aut(X, w).

4.1. Classification Theorem for Weighted Trees. Similarly to the unweighted case, we
can ask when two hyperbolic automorphisms γ1, γ2 of a weighted tree (X, w) generate a free
group. Their translation lengths m1 = mγ1 , m2 = mγ2 and the length of the intersection of
their axes l = ℓ(Aγ1 ∩ Aγ2) are now positive real numbers. We adopt the same normalizations
and definitions for the sequences {mi}, {qi}, and {γi} as in the unweighted case, defined by
the continued fraction expansion of α = m2/m1.

We derive the following result, which generalizes Theorem 3.3:

Theorem 4.8. Let γ1, γ2 be hyperbolic automorphisms of a weighted tree (X, w) with geometric
triple (l, m1, m2) and let α = m2/m1.

If α is rational, then the sequence {mi} is finite and the group Γ = ⟨γ1, γ2⟩ satisfies precisely
the conclusion of Theorem 3.3.

If α is irrational, then the sequence {mi} is infinite and Γ falls into one of the following
cases:

(1) If l = 0, then Γ is a free group of rank two.

(2) If 0 < l < m1 + m2, there are unique integers j, q with
(4.9) (m1 + m2) − mj + (q − 1)mj+1 < l ≤ (m1 + m2) − mj + qmj+1, j ≥ 1, 0 ≤ q ≤ qj − 1.

(a) If l = (m1 + m2) − mj + qmj+1, then γjγ
−q
j+1 is hyperbolic; set

(4.10) l0 := ℓ(Aγjγ−q
j+1

∩ γj+1.Aγjγ−q
j+1

).

• If l0 ≥ mj−(q+1)mj+1
2 , then Γ is not free.

• If l0 < mj−(q+1)mj+1
2 , then Γ is free of rank two.

(b) If l < (m1 + m2) − mj + qmj+1, then Γ is free of rank two.

(3) It is impossible to have l ≥ m1 + m2.

Except for the impossible case (3) for irrational α, the generating pair (γa, γb), their translation
lengths, and the relevant intersection-length or minimum-distance data match those in Table
3.7.

The proof follows the same conceptual structure as that of Theorem 3.3. We perform the
same reduction algorithm for the generating pair (γ1, γ2) as well as the associated geometric
triple (l, m1, m2). The same outcome as in Lemma 3.43 and Proposition 3.46 is expected if
m1 and m2 are commensurable, and a key difference occurs if they are not.
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Lemma 4.11. If m2/m1 ∈ Q, the change of the translation lengths agrees with the description
in Lemma 3.43, where mk = gcd(m1, m2) is the greatest common divisor for commensurable
real numbers. The algorithm terminates in either case (II), (III), or (IV) for l under the
same conditions as in Proposition 3.46.

If m2/m1 /∈ Q, the change of the translation lengths agrees with a Euclidean algorithm that
does not terminate. Nevertheless, for m2 < l < m1 + m2, there are unique integers j, q with

(4.12) (m1 + m2) − mj + (q − 1)mj+1 < l ≤ (m1 + m2) − mj + qmj+1, j ≥ 1, 0 ≤ q ≤ qj − 1.

In this scenario, the algorithm terminates in either case (II) or case (III), depending on
whether the inequality is strict.

Proof. The only nontrivial thing to show is the guaranteed termination for m2/m1 /∈ Q and
m2 < l < m1 + m2. By the definition of the sequence {mj} and the irrationality of the ratio,
we have that {mj + mj+1} is strictly decreasing, and

(4.13) lim
j→∞

(mj + mj+1) = 0.

Hence, for any m2 < l < m1 + m2, there exists an index j ≥ 1, satisfying

(4.14) mj − (qj − 1)mj+1 = mj+1 + mj+2 ≤ m1 + m2 − l < mj + mj+1.

Consequently, there further exists an integer 0 ≤ q ≤ qj − 1, such that l satisfies the claimed
inequality. The termination in either case (II) or case (III) follows straightforwardly from
this fact.

□

It remains to show that the condition m2/m1 /∈ Q with l ≥ m1 + m2 is impossible as a
geometric triple (l, m1, m2) for a generating pair in Aut(X, w).

Lemma 4.15. Suppose (X, w) is a locally finite weighted tree, (γ1, γ2) is a pair of hyperbolic
automorphisms in Aut(X, w), (l, m1, m2) the associated geometric triple, and m2/m1 /∈ Q.
Then one must have l < m1 + m2.

Proof. Assume the opposite, that l ≥ m1 + m2. Let u = γ1γ2.v, then d(v−, u) = m1 + m2 ≤ l,
and [v−, u] ⊂ Aγ1 ∩ Aγ2 . We will derive a contradiction by constructing an infinite sequence
of distinct vertices {vi}∞

i=0 of valence ≥ 3 on the finite geodesic segment [v−, u]:

v0 = v−.

For odd i : vi = γq
1 · vi−1, where q =

⌊
d(vi−1, u)

m1

⌋
.

For even i : vi = γ−q
2 · vi−1, where q =

⌊
d(vi−1, v−)

m2

⌋
.

The length ℓ([v−, u]) = m1 + m2 ensures that d(vi−1, u) ≥ m1 when i is odd and d(vi−1, v−) ≥
m2 when i is even. Thus, the integer q is always at least 1, and each step moves the point a
positive distance along the geodesic.
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By induction on i, one sees that d(v−, vi) = m1(k1) + m2(k2) for some integers k1, k2 ≥ 0
depending on i. Since m2

m1
is irrational, these distances are all distinct (otherwise we get

m1(k1 − k′
1) = m2(k′

2 − k2)). Hence all the points vi are distinct.

However, this constructs an infinite set of distinct vertices with valence ≥ 3 in the compact
interval [v−, u], which is impossible for a combinatorial tree. This contradiction forces us to
reject the initial assumption, proving that l < m1 + m2 must hold.

□

Proof of Theorem 4.8. Lemma 4.15 implies that the condition m2/m1 /∈ Q and l ≥ m1 + m2
does not occur. This corresponds to irrational case (3) in Theorem 4.8.

Except for the case excluded above, we perform the same algorithm for (γ1, γ2) and the
associated geometric triple (l, m1, m2) as described in Section 3. By Lemma 4.11, the algorithm
terminates in case (II), (III), or (IV) within finitely many reduction steps. Propositions 3.12,
3.19, 3.27, and 3.38 then imply our claim, similarly to the proof of Theorem 3.3:

• When l = 0, the algorithm terminates in case (II) instantly, which corresponds to case (1)
in Theorem 4.8.

• When 0 < l < m2, the algorithm terminates in case (III) instantly, which corresponds to
case (2b) in Theorem 4.8 with j = 1 and q = 0.

• When m2 ≤ l < m1 + m2 − gcd(m1, m2) (if m1 and m2 are commensurable) or m2 ≤ l <
m1 + m2 (if incommensurable), the algorithm terminates in case (II) or case (III) after
reduction, which corresponds to case (2a)(i), (2a)(ii) or (2b) for certain integers j and q.

• When m1 and m2 are commensurable and l ≥ m1 + m2 − gcd(m1, m2), the algorithm
terminates in case (IV), which corresponds to case (3), or case (2a)(i) with (j, q) =
(k − 1, qk−1 − 1).

Theorem 4.8

As an interesting remark, the exceptional lengths in Theorem 4.8 that determine the group’s
structure are intimately related to the three-gap theorem (also known as the Steinhaus
conjecture)[11]. This theorem states that for any irrational number α and positive integer N ,
the fractional parts {iα − ⌊iα⌋ | i = 1, . . . , N} partition the circle S1 = [0, 1]/ ∼ into intervals
with at most three distinct lengths. As N varies, the set of all gap lengths that appear for a
fixed α is countable:

Proposition 4.16 ([5], Theorem 2). Let 0 < α < 1 be an irrational number with continued
fraction expansion
(4.17) α = [0; q1, q2, q3, . . . ].
Let α1 = α and define
(4.18) αi+1 = α−1

i − ⌊α−1
i ⌋, ∀i ∈ N+.
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Then, the set of distinct gap lengths arising in the three-gap theorem for α consists of values

(4.19) (1 − qαj)
j−1∏
i=1

αi,

for any j ≥ 1 and 0 ≤ q ≤ qj − 1.

A connection between Theorem 4.8 and the three-gap theorem arises from the Euclidean
algorithm and continued fractions:

Corollary 4.20. In the context of Theorem 4.8, let α = m2/m1 be irrational, and let
(4.21) L = {(m1 + m2) − mj + qmj+1 | j ≥ 1, 0 ≤ q ≤ qj − 1}
be the set of exceptional intersection lengths. Then the normalized set
(4.22) {1 + α − (l/m1) | l ∈ L}
is exactly the set of all gap lengths that occur in the three-gap theorem for the irrational
number α.

Proof. Define αj = mj+1/mj for j ≥ 1, so that α1 = α. The recurrence relation for the
Euclidean algorithm becomes:
(4.23) qj = ⌊α−1

j ⌋, αj+1 = α−1
j − qj.

This is precisely the recurrence defining the continued fraction expansion of α:
(4.24) α = [0; q1, q2, q3, . . . ].
Now, consider an element of L:
(4.25) lj,q = (m1 + m2) − mj + qmj+1.

It corresponds to the normalized value

(4.26) 1 + α − lj,q

m1
= (m1 + m2) − lj,q

m1
= mj − qmj+1

m1
.

We can express this quantity in terms of the αi:

(4.27) mj − qmj+1

m1
= (1 − qαj) · mj

m1
= (1 − qαj)

j−1∏
i=1

αi,

for j ≥ 1 and 0 ≤ q ≤ qj − 1. As in Proposition 4.16, these values represent the distinct gap
lengths arising in the three-gap theorem for the irrational number α = [0; q1, q2, . . . ]. This
completes the identification.

□
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