SCHOTTKY PAIRS ON TREES VIA CONTINUED FRACTIONS AND
AXTAL GEOMETRY

YUKUN DU AND SA’AR HERSONSKY

ABSTRACT. We give a complete criterion for when two hyperbolic automorphisms of a tree
generate a free, discrete subgroup. The decision depends only on three geometric invariants:
the translation lengths of the generators and the length of overlap of their axes. This data is
organized using the continued-fraction expansion of the translation-length ratio. We extend
the result to weighted trees, allowing arbitrary positive real translation lengths under local
finiteness. In the irrational case, the exceptional configurations are shown to correspond
precisely to the gap lengths in the three-gap theorem.

1. INTRODUCTION

This paper is concerned with the geometry and algebra of free, discrete subgroups generated by
pairs of hyperbolic automorphisms of trees. Our approach is geometric and reduction-based:
we encode a generating pair through their translation lengths and the configuration of their
axes, and seek criteria that determine whether the resulting subgroup is free of rank two and,
in that case, whether it is generated by a Schottky pair.

The classical motivation arises from the theory of Fuchsian and Kleinian groups, i.e. discrete
subgroups of PSL(2,R) and PSL(2, C), which act by isometries on the hyperbolic planes H?
and H®. Two-generator free subgroups (Schottky groups) in this setting can often be detected
by geometric inequalities involving traces of the generating matrices and angles or distances
between their axes; see, e.g. Jorgensen’s inequality [7], which gives a necessary condition for
discreteness, or the sharp length—angle criteria of Rosenberger [12]. While these results are
well-understood in the archimedean setting, the corresponding problem over non-archimedean
fields remains far less explicit.

This motivates the study of analogous phenomena in the realm of trees. When K is a non-
archimedean local field, the group PSL(2, K') acts by isometries on its associated Bruhat-Tits
tree, and questions of discreteness, freeness, and reduction become intertwined with the
geometry of that action. More generally, one can view Aut(X), the automorphism group of a
locally finite tree X, as a combinatorial analogue of Isom(H") for the purpose of studying
non-archimedean Schottky groups.

The overarching problem of understanding free discrete tree actions has deep roots in the
study of p-adic groups, combinatorial geometry, and number theory. Such actions play a
central role in the structure of rank-one p-adic Lie groups, where discrete free subgroups
serve as convex-cocompact lattices—often arising as fundamental groups of Mumford curves
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or p-adic Drinfeld modular varieties. A foundational result of Lubotzky [9] asserts that
any finitely generated, torsion-free, discrete subgroup of Aut(X) is automatically free and
Schottky [9, Proposition 1.7], highlighting a rigidity phenomenon: while discreteness forces
freeness in this context, detecting when a given generating pair yields a Schottky subgroup
remains a subtle geometric problem. These issues are closely tied to expansion, spectral theory,
and invariant measures, as developed in Lubotzky’s monograph [10]. Beyond algebraic and
geometric rigidity, Schottky tree actions also serve as uniformizing groups for p-adic analytic
curves such as Mumford curves (see [3]), and their structural and spectral properties govern
the fractal geometry of their limit sets. In joint work with Hubbard [6], the second-named
author showed that the Hausdorff dimension of such limit sets can be computed explicitly
using transfer operators. These connections underscore the need for a precise geometric
criterion describing when a pair of hyperbolic automorphisms generates a Schottky subgroup
of Aut(X). Yet, a precise geometric criterion characterizing when a given pair of hyperbolic
automorphisms generates a free (or Schottky) subgroup is still lacking. With this in mind,
we are interested in the following question.

Question. Let 71,72 € Aut(X) be hyperbolic automorphisms of a locally finite tree X,
with translation lengths m; and ms, and suppose their axes A,, and A, intersect. Assume
that the subgroup I' = (7, 72) is discrete. Under what conditions is I" free of rank two? If I’
is free, can one find a Schottky pair 7.,y generating I'?

This question plays a central role in both classical and p-adic geometric group theory. In
the setting of SLy(K') acting on the Bruhat—Tits tree, Conder [1] developed an algorithmic
reduction procedure using Nielsen moves to determine either that a word is elliptic or that the
pair satisfies a Schottky ping—pong hypothesis. His approach yields a constructive membership
criterion for two-generator free subgroups of SLy(K).

Our aim here is different but complementary. Rather than solving the membership problem,
we work in the general geometric setting of Aut(X) and give a complete structural classification
of when a pair of hyperbolic automorphisms generates a free discrete subgroup, expressed
entirely in terms of translation lengths and the length

(1-1) = K(A% N A72)7

of intersection of their axes (with [ = 0 in the disjoint case). Up to conjugacy, the triple
(my,ma,l) determines the group and its Nielsen-reduced generating pair. Our main result
shows that I' is free if and only if a certain explicit condition involving mi, ms, and the
continued-fraction expansion of msy/m; is satisfied. In particular, for fixed (my, ms), the
parameter [ cleanly separates the free cases from the elliptic ones.

Furthermore, we extend this classification framework to weighted trees, where edge lengths
are arbitrary positive real numbers. In that context, when the ratio my/m; is irrational, the
possible non-free values of [ form a discrete set in (0,m; + my), and we show these values
coincide with the gap lengths appearing in the three-gap theorem [11]. This further highlights
a subtle Diophantine phenomenon governing the boundary of freeness for tree-based Schottky
groups.

Organization. In Section 2, we recall foundational facts about tree automorphisms and
the Nielsen moves used throughout the paper. In Section 3, we define geometric triples and
prove our primary classification result, Theorem 3.3. Section 4 extends this classification
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to weighted trees and identifies a link between axis-intersection lengths and the three-gap
theorem via continued fractions, culminating in Theorem 4.8.

2. PRELIMINARIES

In this section we introduces the basic framework of tree automorphisms and sets the geometric
foundations used throughout the paper. In particular, we recall standard combinatorial
notions such as axes, translation length, and the visual boundary, and describe how hyperbolic
automorphisms act by translations along unique bi-infinite geodesics. We then develop the
Nielsen reduction process, formulated as elementary moves on generator pairs that strictly
decrease the total translation length. This sets up the length-reduction scheme that drives
the main theorems, with Lemma 2.7 establishing the key contraction property under Nielsen
moves.

2.1. Trees and Tree Automorphisms. A tree is a connected, acyclic simple graph X
with vertex set V(X) and edge set £(X). For vertices v, w € V(X), the length of the unique
simple path [v, w] defines the combinatorial distance

(2.1) d(v,w) = £([v,w]).

An automorphism of X is a graph isomorphism ¢ : X — X. The group of all automorphisms
is denoted Aut(X).

Definition 2.2. An element g € Aut(X) is called elliptic if it fixes a vertex, hyperbolic if it
fixes no vertex and no edge (up to inversion), and an inversion if it preserves but flips an
edge.

We focus on inversion-free actions. The following classical facts (due to Serre [13, Ch. I]) will

be used throughout, stated without proof.

Proposition 2.3 (Elliptic case). If g € Aut(X) is elliptic, then it fives a (possibly degenerate)
subtree T, C X. Moreover, for any v € V(X),

(2.4) d(v,g.v) = 2d(v, T,).

Proposition 2.5 (Hyperbolic case). If g € Aut(X) is hyperbolic, then the minimum dis-
placement

(2.6) my = vgi&) d(v,g.v) € Ny

is achieved exactly along a bi-infinite geodesic Ay, called the axis of g. Moreover,
(2.7) d(v,g.v) =mg+2d(v, Ay).

Corollary 2.8. Let g € Aut(X) and v € V(X). Then

e g is elliptic or an inversion if and only if d(g~ v, g.v) < d(v, g.v);

e g is hyperbolic if and only if d(g~ v, g.v) > d(v, g.v).
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Corollary 2.9. If g is elliptic and u is the midpoint of [v, g.v], then T, N [v,g.v] = {u}. If g
is hyperbolic and w € [v, g.v] satisfies d(v,w) = d(v, g.v) — 3d(g~ v, g.v), then w € A, and

(2.10) m, = d(g v, g.v) — d(v, g.v).

Definition 2.11. A subgroup G < Aut(X) is discrete if there is a finite subtree " C X such
that the pointwise stabilizer

(2.12) Gr={9eG|lgv=vVveVT)}

is trivial.

Remark 2.13. If G < Aut(X) is finitely generated and discrete, then all vertex stabilizers G,
are finite and uniformly bounded in size. Throughout we assume all groups are inversion-free
and discrete unless noted.

2.2. Nielsen Moves and Length Reduction. Let I' = (71,72) < Aut(X) be generated
by two hyperbolic automorphisms with translation lengths my, ms. A Nielsen move on the
ordered pair (71, 72) is one of the transformations

(2.14) (7,72) = (1 72), (n,7e) = (2om), (1,72) = (1172, 72)

or the inverse of one of these. Such moves generate Aut(F,) and do not change I'.

We apply these moves in a translation-length-minimizing fashion. Assign a lexicographic
order to length pairs:

(2.15) (my1,ms) < (my,mb) if my < mf or (my =m} and my < mj).
A Nielsen move is length-reducing if it replaces (y1,72) with (7, 74) such that

(2.16) (m,my) <iex (M1, ma), and often (m7,my) < (my,ms).

Iterating length-reducing moves produces a finite sequence

(2.17) (1,792) = (17, 987) = = (1, 87),

terminating when no further reduction applies. This process resembles the Euclidean algorithm
(see Section 3) and controls the geometry of axes intersections. The geometric consequences
of this reduction are developed in Section 3, and form the basis for Theorems 3.3 and 4.8.

Remark 2.18. In contrast to PSL(2,R), where trace identities guide length minimization, here
the reduction is entirely combinatorial and encoded by translation lengths and the quantity
(A, NA).

Having established the basic notation and the role of Nielsen transformations in reducing
generating pairs, we now turn to the question posed in the Introduction: how the geometric
data (mq, mas, 1) associated to a pair of hyperbolic automorphisms governs the structure of the
subgroup I' = (71, 72). In the next section, we develop a Euclidean-style reduction algorithm
on geometric triples that leads to a complete classification of when I' is free of rank two and,
in particular, when it admits a Schottky generating pair.
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3. AXIS-INTERSECTION CRITERIA AND GEOMETRIC TRIPLES

In this section we introduce the notion of a geometric triple associated to a pair of hyper-
bolic automorphisms and develop the length-reduction algorithm that underlies our main
classification result. By analyzing successive Nielsen moves and tracing the evolution of
translation lengths and intersection data, we reduce any generating pair to one of a few
canonical configurations. This procedure culminates in Theorem 3.3, which gives an explicit
geometric criterion for determining when such a pair generates a free, discrete subgroup and
when it admits a Schottky generating pair. The proof combines combinatorial Nielsen theory
with metric bounds derived from axes geometry in the tree.

To present a streamlined formulation of our answer to the question posed in the introduction,
we first introduce the following normalization

e Without loss of generality, assume m; > ms.

e If the axes have at least one common edge, £(A,, N A,,) # &, let [v~,v"] denote this
intersection. In addition, we assume that both 7, and 7, translate from v~ toward v™ along

v, vt

e If the axes do not share an edge, let [v1, v2] be the unique (possibly degenerate) geodesic
path connecting A, and A,,, such that v; € A,, and vy € A,,. We adopt the convention
that the axes are disjoint in this scenario, even though they may meet at a vertex.

In this setting, the group I' = (71, 72) is described by the translation lengths m; = m,,,
mg = Mm.,, and the length [ = ¢(A,, N A,,) of the intersection of the axes. As we will show
below, whether ' is free of rank 2 is determined by these parameters, closely related to the
continued fraction expansion of the ratio o,

3.1. The Main Theorem. To make our claim precise, we define two sequences inductively.
The first is a sequence of positive integers {m;}**! which is essentially the Euclidean algorithm
for my and my. Start with mq, my (where my > my > 0). For i > 1, as long as m;1 > 0,

define:

my;
(3-1) q; = { J y Myipo = My — q;1MG41-
mi+1

This process terminates at the first index k for which my.; = 0; note that my = ged(mq, my).

The second is a corresponding sequence of group elements {~; Mlin I'. Starting with the
given vy, ¥, define for ¢ > 1:

(3.2) Vit = ViViil-
The sequence {v;} is thus defined for i = 1,2,...,k + 1.

We can now state our main classification theorem.

Theorem 3.3. Under the assumptions above, let
(3.4) =LAy, NA).
Then I' = (y1,72) falls into exactly one of the cases (1)-(3) below:
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(1) If L =0, then T' is free of rank two; there is a Schottky pair of generators (va,y,) whose
axes have disjoint edges.

(2) If 0 < I < my + mg — ged(my, ms), there are unique integers j, q with

(3.5)

(ma+ma) —m;+(qg—1)mjp <1< (mit+me) —mj+qmjp, 1<j<k-1 0<¢g<g—1
(a) If I = (my + ma) — my + qmyp, then ;v\ is hyperbolic; set

(36) lo = g(A —q N Vi+1- A'YJ’Y-__El)'

i) If lp > ™= qH)m”“ then T is not free: it is generated by a hyperbolic element

Ya and an ellzptzc element v,. The azis A, and fized subtree T, are disjoint.

i) If ly < % then T is free of rank two: there is a Schottky pair (va, W)
whose axes A, and A, are disjoint.

(b) If | < (mq +mg) —mj + qmjyq then I' is free of rank two: there is a Schottky pair
(Ya, W) whose azes A, and A, intersect with v* as an endpoint.

(8) If | > my + my — ged(my, ma), then T' is not free: it is generated by a hyperbolic element
Ya and an elliptic element v,. The azis A, and fived subtree T., intersect with v* as an
endpoint are disjoint.

The generating pair (7., ), their translation lengths, and the relevant intersection-length /
minimum-distance data are summarized in Table 3.7 below.

. A, 0 Ay, (A, A,
Case || Generators (Va,Vp) | Ma M Relation (A, T, ). or d(A.,, T%)
(1) (71,72) mi mo Disjoint axis-axis >0
(2a)(i) g1 Elliptic Disjoint axis-tree (mj — (¢ + 1)mjy1)/2
(’Yj—i-l,’Yj’Yj_f_l ) My — (q T+ 1)m- 1
(2a)(ii) It 9 7+ | Disjoint axis-axis lo
—2lp
— . . . l — mi1 — my
2 . ~T4 _ . M -
(2b) (Vj+1s ’y]'y]H) mj — qmj41 eeting axis-axis s — (g — 1)myes
(3) (Vs Ye+1) mp Elliptic Meeting axis-tree I —mq — mo +my

TABLE 3.7. Case summary for I' = (71,72). The entry ‘elliptic’ in the my,
column indicates 7, is elliptic and does not have a translation length.

Remark 3.8 (Tree-Version of the Shimizu Criterion). The axis-overlap threshold stated in
Theorem 3.3 refines a classical qualitative principle: that two hyperbolic automorphisms
of a tree generate a free group provided their axes do not overlap “too much.” A precise
formulation of this principle appears as a consequence of Tits’ ping-pong arguments in Serre’s
exposition [13]: if g, h € Aut(X) are hyperbolic and

(3.9) (A, N Ap) <min{l(g),(h)},
then (g, h) is a free rank-two subgroup of Aut(X). This may be viewed as a tree-theoretic

analog of the classical axis-separation criteria for Schottky-type subgroups in Kleinian group
theory (often discussed under the heading of a Shimizu lemma, not to be confused with
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Shimizu’s inequality for parabolic elements). Our Theorem 3.3 sharpens this picture in the
simplicial setting: once the continued-fraction reduction {7;} of (3.2) is taken into account,
the critical threshold for the original pair (7;,7,) turns out to be the precise value

(310) K(Afyl N A’yz) =mi+mg — gcd(ml, mg),

with elliptic behavior forced exactly when this bound is exceeded. Thus, the present result
furnishes a quantitative completion of the classical axis-overlap criterion for rank-two free
subgroups in Aut(X).

3.2. Geometric Triples for Generating Pairs. Before proving the theorem, we establish
some further notions for a clearer description.

Definition 3.11. Let X be a tree and let vy, € Aut(X) be hyperbolic automorphisms
that generate a discrete subgroup. Let mq,ms > 0 be their translation lengths, and let
l=1((A, NA,) be the length of the intersection of their axes. The triple (I, m;,ms) is called
the geometric triple of the generating pair (71, y2).

If we assume m; > mg, the definition guarantees that the geometric triple (I, my, msg) of a
hyperbolic generating pair satisfies exactly one of the following three conditions:

(IT) 0 <1 < mo.
(IIT) 1 = 0.

Having established the possible cases for the geometric triple, we now prove that the group
I' = (71, 72) is automatically Schottky in two of the scenarios.

Proposition 3.12 (cf. [1], Proposition 3.4). Let (y1,72) be a pair of hyperbolic automorphisms
with translation lengths my > my, and suppose its geometric triple (I, my,mso) falls in either
case (II) or (III). Then, I' = (y1,72) is free and discrete, and (y1,72) is a pair of Schottky
generators.

Proof. We proceed by constructing explicit fundamental domains for the action of I' on X.

Case (II): 0 <[ < may. Recall that we denoted the intersection of the axes by [v~,v*], and
assumed without loss of generality that both 77 and 7, translate from v~ toward v*. We
denote four edges as follows (see Fig. 3.13):

e For i =1,2, let ¢; be the edge in A,, \ [v~,v"] that is adjacent to v.

e For i = 1,2, define e = v;.¢; .
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A el A
»’h___ - __1__._____7’1
v, vt
- 4
A, €2 €o ™\ A,
> - - - L >
V2.

FIGURE 3.13. The fundamental domain in case (II), where we set [ = 2,
my = 3, and my = 5. Irrelevant vertices and edges are omitted. Edges not in
the fundamental domain are dashed.

Case (III): [ = 0. In this scenario we denoted the unique (possibly degenerate) path
connecting the two axes by [v1, v2], where v; € V(A,,) for i = 1,2. We denote the edges
differently (see Fig. 3.14):

e Fori=1,2, let e; be the edge in [y,

. v, v5] adjacent to v;.

e For i = 1,2, define e/ = v.e; .

- =
Ay €1 1 €1 A
- - - e
Y1-V1
— )+
SIS ‘ A
- B
V2 Y2.U2

FIGURE 3.14. The fundamental domain in case (III), where we set m; = 2,
and my = 3.

In either case, the automorphism ; translates e; to e;, and the four edges e¢; and e; are
disjoint from the edge sets E([vT,v7]) or £([vy,vs]). Define H;" (and H; ) for i = 1,2 to
be the connected component of X \ {e;} (X \ {e; }, respectively) that does not meet the
specified path [v*,v~] or [vy,v]. Then the subtrees H are non-empty and pairwise disjoint,
satisfying the Ping-Pong condition:

(3.15) v (X\H)=¢f UH}, ~ ' (X\H)=e UH;, i=1,2.

Let Y be the connected set of vertices and edges, determined by its edge set

(3.16) E(Y)=EX)\ (E(H UHy UHY UHy)U{ef, e5}),

and maximal subtree Y, C ), where

(3.17) E(Yo) = EX)\ (E(H UH] UHS UHy) U{ef e5.e1, ¢, }).

By the Ping-Pong Lemma, I' = (71, 72) is a Schottky group with respect to generators v; and
~v9 and the fundamental domain ). The group I' is thus discrete and free of rank 2.

O
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If the geometric triple (I, my, mg) is in case (I), we apply a Nielsen transformation to replace
(71,72) by a new generating pair (7175 ', 72), and consider an associated triple. Define the
candidate triple algebraically as:

(3.18) (I',my,ma) = (I — mg,my — ma, my).

This candidate triple (I, m}, ms) necessarily satisfies one of the following conditions:
(I) I > min(m/, my) and m} > 0,
(IT) I < min(m}, my) and I’ > 0,
(III) m{ >0 and I' =0, or
(IV) m{ = 0.

We note that the first three cases are analogous to our original classification, possibly after
swapping m} with mg. The case (IV) is new.

Under specific conditions, this candidate triple indeed realizes itself as the geometric triple
for the new generating pair.

Proposition 3.19 (cf. [1], Proposition 3.5, Case (2)(ii)). Suppose the geometric triple
(I,mq1,ma) is in case (1), and its associated candidate triple (I',m), my) is in case (1) or (II).
Then, the element v1v5 " is hyperbolic. In addition, the candidate triple (I',m), my) is the
geometric triple of the new generating pair (y17v; ', 72), with vt € V(A, N A as an
endpoint.

71"12_1)

Proof. First we establish the hyperbolicity of 71795 ' with the predicted translation length.
Refer to Fig. 3.21, the inclusion v* € V(A4,, N A,,) implies that v, '.vt € V(A,,); by the
assumption I' =1 —my > 0, 75w € V(A,,) as well. Since v, and 7, translate toward the
same direction, the distance between the latter two points is

(3.20) d(yi ot vt ot) =dt et —d(vT e o) = my — m.

FIGURE 3.21. Generator reduction from the geometric triple (I,m,my) =
(3,5,2) to (I';my,ms) = (1,3,2). This figure describes a reduction to case (II);
a figure for case (I) is analogous and is left to the reader.
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Denote the path P = [y; .0, 75 0] and apply the automorphisms v; and 7, to it:

e Since P C A,,, the automorphism v, translates P to a path [v™, 7175 ~.vF]. The length of
this translated path is again m; — ms, and the path emanates from vt to 4175 Lot in the
positive direction along A, .

e Since [ — my > 0 is strict, the edge in £(P) adjacent to 75 *.v* is contained in A.,. The
automorphism 7, translates P to a path [v™, 49y, *.vF]. The length of this translated path
is also my — my, while it emanates from v™ in the negative direction along A, N A,,.

This configuration implies that the points v, *.v" and o7 *.ot lie on different directions
initiating from v, specifically:

(3.22) d(mys P ot ey tot) = 2(my — mg) > my —my = d(vT, 1y, Loh).

By Corollaries 2.8 and 2.9, this inequality confirms that v, ' is hyperbolic with translation
length mq — mo.

Next, we derive the two endpoints of the intersection A,, N A 251 to confirm the geometric
triple and the inclusion v* € V(A,  -1).
[vF, v tot] C A, -1 and [0, 175 L wtIN A, = {vT}, establishing that v* is one endpoint
of the intersection A,, N Am N To obtain the other endpoint, let 7 > 0 be the smallest

natural number such that j(m; — mg) > 1 — my. This condition, as illustrated in Fig. 3.21,
ensures that

(3:23) (e Yt € V(AL \Ay), while A7 ()Tt € V(A NA,).
(Note that for j = 0, we interpret v; (7977 ') Lot as 45 "ot which lies in 4., N A,,.)

We know from our first argument that the path

Recall that v~ is the other endpoint of A,, N A,,. The inclusions above imply that

(3.24) (e Y ot o e YT TN A, = o (e )T
Translating this configuration by s yields:

(3.25) (2 Y, (e Y TN Ay, = [0, (er ) 0]

Note that [(y2y; ) ot (voy7 1) 0F] € A, -1; the result above identifies 7.0~ as the other

endpoint of A, NA_ g Then, the length of this intersection is computed as

(3.26) (A, NA ) =d(ypv,vT) =dv,v) —dv T, o) =1—my =1

—1
Y172

This concludes our claim that the candidate triple (I',m/, m2) is indeed the geometric triple
for the generating pair (7175 ", 72).

O

Proposition 3.27 (cf. [1], Proposition 3.5, Case (2)(iii)). Suppose the geometric triple
(I,mq1,ma) is in case (I) and its associated candidate triple (I, m’, my) is in case (III): ' =
and my > 0. Let ly = ((A,, NY2.A,,). Then:

o Ifly > ™5™, then Y15 ' is elliptic. Furthermore, the axis A,, and the fized tree Tngl

are disjoint, with d(A,,, T, 1)

mi—ma2
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o Ifly < ™5™2, then Y175+ s hyperbolic. Furthermore, the geometric triple of T' with respect

to the new generating pair (Y1ys ', Y2) is (0,my —mag — 2lg, my), with the minimum distance

d(A,YQ, A - lo.

7172_1)

Proof. As established in the proof of Proposition 3.19, the path v;.P = [v*, y175 '.v7] has
length m; — my and emanates from vt to v,95 '.vT in the positive direction along A,,. The
length of 5. P = [vT, ’}/2’}/1_1.’()+] is also m; — my, while the condition [ = my implies that 5. P
does not follow the negative direction along A, N A,, when emanating from v*. Therefore,
[T, 7277 "] either emanates from v in a direction different from those in A, U A,,, or
shares common edges with [vT, 7175 *.v7].

Notice that yo7; vt € V(72.A.,), while the condition [ = my implies that v,7; vt =
1.0~ € V(A,,). On the other hand, .0t € V(72.4,,) and [v*,y.07] C Ay, \ A,,, hence v
is an endpoint of the intersection A,, N7,.A,,. It follows that

(3.28) U(y1.P N72.P) = min(lg, m; —ma),
and

(3.29)  d(mivs v, ey tut) = 2(my — ma — (1. P N 2. P)) = 2max(0,m; —mg — lp).

We continue by discussing the two cases claimed in the proposition.

Case (i): lp > ™5™2. In this case, the distance
(3.30)  d(niyy tot ey tet) = 2max(0,my — my — lo) < my —my = d(vt, 95 T,
thus Corollary 2.8 implies that ;75 ' is elliptic.

A,

(¢

> .

FIGURE 3.31. An elliptic reduction: the geometric triple (1, m1,ms) = (2,6,2)
yields a candidate triple in case (III) with Iy = 2. The element ;75 ' is elliptic,
and a vertex u fixed by it is marked.

Corollary 2.9 further implies that [v*, v195 '.v"] intersects with T, 4y at the midpoint wu,
thus

(3.32) (A, T

my —Mmg
_1) -
'Yl’Yg

1 _
=d(v,u) = §d(v+,7172 Lot) = 5
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Case (ii): [y < ™5™2. First, we establish the hyperbolicity: the distance

(3.33) d(yiv, P ot ey tot) = 2(my — my — lo) > my — mg = d(vT, 11y, o),
thus Corollary 2.8 implies that v,v, ' is hyperbolic, and Corollary 2.9 implies that the
translation length

(3.34) Mot = d(nyz 0" e t) = dtmg ™) = my—ma — 2.

A’Yl 44“ . 1

A,
»

2

FIGURE 3.35. A hyperbolic reduction: the geometric triple (I,m;,my) =
(2,6,2) yields a candidate triple in case (III) with I = 1. The new element
Y175 is hyperbolic, and its axis is disjoint from A,

We now determine the geometric triple by considering the positional relation between A,,
and AVIV;L Let w be the closest point projection of v™ to Am,gl. By Corollary 2.9,

1
(3.36) dvt,w) = d(v+,7172_1.v+) — id(%y;l.ﬁ,ygyl—l.vﬂ = .

This shows our claim if I, > 0. Otherwise, the condition [y = 0 implies that w = v™, and the
property of hyperbolic automorphisms implies that

(3.37) [y ot U oty Tt C A

As we have shown, neither [v",v175 " .v*] nor [v*, 4977 .v"] emanates from vt along A.,
Therefore Ay, NA) -1 = = {vT}, which also yields our desired conclusion.

O

Proposition 3.38. Suppose the geometric triple (I, my,ms) is in case (I) and its associated
candidate triple (I, m, my) is in case (IV): m, = 0. Then yiyy " is elliptic. Furthermore, the
intersection A, N T,mz)_l has length l', with vt as an endpoint.

Proof. We first derive the ellipticity of 7175 . The condition m/} = 0 implies m; = m,. Since
the original triple (I, my,ms) is in case (I), the resulting relation [ > m; = my implies that

(3:39)  wlwtinlet eV NA,), di et et) =my =d(yy et ),

Since v, and 7, translate toward the same direction, 77 'ot = 75 .v*, which implies
1175 Lot = vt see Fig. 3.40.
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A% A

—1
Mot

RS R
=79 U /U+

1

v Y1.U

V2 — "}/2.?}_

A

2

Ay

FIGURE 3.40. An elliptic reduction: the geometric triple ({,my, ms) = (3,2,2)
yields a candidate triple in case (IV). The new element 7, ' is elliptic, and
the path [y;.07,v] is fixed.

This fixed point demonstrates the ellipticity of 175 *.

Next, we obtain the two endpoints of A, nT., vyt to confirm the intersection length. Let e* be
the edge in £(A,, \ 4,,) that is incident with v*. Since v; .t ¢ £(A,,) and 75 '.et € £(A,,),
yitet # 45 tet, which further implies et # v, *.et. As we have shown earlier, et and
Y175 +.e* share the vertex v™, confirming that v* is one endpoint of A, N7, gt

For a similar reason, if we let e~ be the edge in £(A,, \ A,,) incident with v~, then

(3.41) Y1.€” E e, e Nyg.e” =Y.0 .

Writing 71.€” as (7175 ')-(72.€7), We observe that v,.v™ is the other endpoint of A, N T,z
Consequently,

(3.42) WA, NT

—1
V1Yo

) =dwt, o) =dvTvT) —dv T, o) =1—my =1

O

3.3. Proof of Theorem 3.3. Let (71,72) be a pair of hyperbolic automorphisms generating
a discrete subgroup (v1,72), and (I, m1, m2) be the associated geometric triple. We apply
Nielsen transformations to the generating pair, and reduce the geometric triple simultaneously,
following the rule (cf. [1], Algorithm 4.1):

o If my < may, replace (y1,72) with (v2,71), and (I, mq, ms) with (I, ms, my).

e If m; > my and the triple satisfies case (I), replace (71,72) with (1175 %, 72), and (I, m1, ms)
with (I — mg, m; — mg, my).

e Terminate the reduction procedure if m; > mgy and the triple satisfies case (II), (III), or
(IV).

The reduction resembles the Euclidean division algorithm and thus always terminates.

Lemma 3.43. Define the sequences {m;}*! and {¢;}5=! as in the beginning of Section 3.

Starting with the triple (I,m1,ms), mq > ma, the change of the two translation lengths in the
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triple agrees with the Euclidean algorithm before termination:
(m1,ma2) = (M1 —ma, ma) = -+ = (M1 — @z, ma) = (M3, m2)
— (ma, m3) = (ma — mg,mz) = -+ = (M2 — gamg, m3) = (Mmy, M)
(3.44)
= (Mgp—1,mp) = (Mgp—y — My, M) = =+ = (M1 — Qoe1Mk, M) = (M1, M)
— (Mg, mgy1) = (ged(mq, m2), 0).

Denote the sequence of triples occurring in this algorithm by {( mg ),mgn)) 0, SO

(10 m§0>, g)) = (I,my,my). Then for any state index n > 0, the triple (I™ mg ),mg ))
satisfies

(3.45) 1 — (™ — Y =1 —my — my.
Furthermore, the algorithm terminates if and only if one of the following occurs:

e The algorithm terminates in case (II) or (II1) if I < mé") for a certain index n. Specifically,
it terminates in case (III) if I = 0; otherwise, it terminates in case (II).

o If the condition 1™ > m( ") persists until the final state (1), mgN), mgN)) =({l—-my—mg+

ged(my, ma), ged(my, ma),0) occurs, the algorithm terminates in case (IV).

The lemma is clear regarding the description of the algorithm and the four cases for the
geometric triple. We now take a closer look at the algorithm based on this lemma:

Proposition 3.46. Let (I,my,ms) be a geometric triple with my > my, and define the
sequences {m; }F and {g; Y%= as in the beginning of Section 3. The following cases exhaust

the possible outcomes of the reduction algorithm:

e If1 =0, the algorithm terminates in case (III) without any reduction steps.
o [f0 <l < my, the algorithm terminates in case (I1) without any reduction steps.

o I[fmy <l < my+mg—ged(my,msy), there are unique integers j,q with
(3.47)
(mi+ma) —mj+(g—1)mjp <1< (myi+mg)—mj+qmj, 1<j<k—1 0<qg<g—1

— If Il = (my + mg) — m; + gmj1, the algorithm terminates in case (1II) after reduction.
— If I < (mq + mg) —m; + gmj41, the algorithm terminates in case (1) after reduction.

o If 1 > (my + ma) — ged(my, my), the algorithm terminates in case (IV) after reduction.

Proof. Before giving the proof, we observe that the difference {( mm(mgn), m(2 )) is non-

increasing. The algorithm continues whenever (") min(mg") mé )) is non- negatlve, and

(n) (n)

terminates when it becomes negative, possibly after a final swap of m; "~ and m,

The proof for the first two outcomes is clear. If [ > my + mq — ged(my, ms), then before the
last step of the Euclidean algorithm, we have translation lengths

(3.48) mi™ Y = mY = ged(my, ma).
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By Lemma 3.43,
(3.49) IND = —my —my + 2 ged(my, me) > ged(my, my).

This inequality together with our observation implies that the algorithm continues until the
end of the Euclidean division algorithm for (mq, ms). By Lemma 3.43, this corresponds to a
termination in case (IV).

Suppose now the following inequality holds for integers 1 < j <k —-1land 0 <¢g<g¢q; — 1:
(3.50) (m1+ma) —mj + (g — Dmypr <1< (my+ma) —my + qmya.
As in Lemma 3.43, we consider two consecutive states for the translation lengths in the

algorithm:

(3.51) (mgn)’mgn)) = (m; — qmt1,mj41), (mgn+1)’ mgnﬂ)) = (mj — (g + 1)myp1, mjy1).
The corresponding quantity (™ is

(3.52) 1 =1 —my—my+m{” +md” =1 —my —my + mj — (¢ — 1)mjzq.

The inequality for [ implies 0 < (™ < m; ;. Together with our observation, this relation
implies one of the followings:

e If 0 < I™ < mjyy, 3.43 implies that the triple (I,m;,my) terminates in case (II) at the
n-th state.

e If [(™ = m; 4, the triple (I, m;,my) terminates in case (III) at the (n + 1)-th state.
U

Proof of Theorem 3.3. Perform the algorithm for the generating pair (71, 72) and the associ-
ated geometric triple (I, mq, m2) as described at the beginning of this subsection. Parallel to
the transformation of (mq,my) described in Lemma 3.43, the generating pair transforms as
follows:

(1:72) = (s v2) = = (e T 72) = (3, 72)
= (12,73) = (275 ) = - = (2 2, 73) = (14,73)
(3.53)

= (Ve=1,) = Ve=1%% ) = - = (=17 ™ %) = (Ve )
= (Ves Vet1)-

We similarly denote this sequence of generating pairs by (ﬂn), 75")). By Proposition 3.19, the
candidate triple (1™, m§”’, mé”)) is the geometric triple for the generating pair (%n), vén)),
except for the final step that reduces the triple to cases (III) or (IV). We will discuss the

outcome of the algorithm as described in Proposition 3.46.

Termination in case (II) or (III) without reduction. If the algorithm terminates
without reduction steps, then | < my. Proposition 3.12 proves that I' is free and that (v;,72)
is a pair of Schottky generators. When [ = 0, this corresponds to case (1) in Theorem 3.3.
When 0 < [ < ma, it is straightforward to check that the pair corresponds to a specific
instance of case (2b) with 7 =1 and ¢ = 0.



16 YUKUN DU AND SA’AR HERSONSKY

Termination in case (II) after reduction. If the reduction terminates at a candidate
triple in case (II), Proposition 3.46 shows that [ satisfies the inequality

(354) (m1 + mg) —m; + (q — l)ij <l< (m1 + mg) —m; + qmjy1,

for certain 1 < j <k —1and 0 < g < ¢g; — 1, except for (j,q) = (1,0) discussed earlier.
Proposition 3.46 further implies that the algorithm terminates at the geometric triple

(3.55) (l(n)amgn), mén)) = (I =my—ma+mj —(q— 1)myp1,my — qmjyr,mji)

of the generating pair (Vp,v,) = (%n), ’Vén)) = (77541, 7j+1)- The Schottky property for the

generating pair is guaranteed by Proposition 3.12, and the translation lengths m,, m;, and
the intersection length ¢(A,, N A, ) are derived from the geometric triple (I m(ln), m§">).
Proposition 3.19 also guarantees that v* remains as an endpoint of the axes intersection after
each reduction step, hence v* is an endpoint of A, N A,, . This corresponds to case (2b) in

Theorem 3.3.

Termination in case (III) after reduction. If the reduction terminates at a candidate
triple in case (III), Proposition 3.46 shows that

(356) = (m1 + mg) —my + qmiia

for certain 1 < j < k—1and 0 < ¢ < ¢; — 1, except for (j,q) = (k—1,q,—1 — 1). The
algorithm terminates at the candidate triple

(3.57) (1o, mgnﬂ) mgnﬂ)) = (0,m; — (g + 1)mjs1, mjt1)

of the generating pair (1,7) = (1" ",%"™) = (4 ).

From the description of the algorithm, the preceding generating pair is (% ),75 )) =

(n) (n))

(VY541 Vj+1), with the geometric triple (1 my™ my™) = (mjy1, m; — gmjy1,myy1) in case

( (n+1) (n+1))

(I). By Proposition 3.27, the nature of the subsequent generating pair (1,,7.) = (71,7

is decided by the length [y = K(Am;q N 7j+1.A%_7fql):

o If [y > M , Proposition 3.27 shows that v, = 7;7;; 4 ' is elliptic, and distance
d(A,,,T,,) = d(A T 1) = % This corresponds to case (2a)(i) in Theorem

Yi+1 ’Yj’Yj+1
3.3.

o If [j < %, Proposition 3.27 shows that v, = ijj_fl_l is hyperbolic, with trans-

lation length my, = m__-o-1 = m; — (¢ + 1)m;41 — 2ly, and distance d(A,,,A,) =

Y3741
d(A, A _-a-1) =lp. This corresponds to case (2a)(ii) in Theorem 3.3.

Vit Y0

Termination in case (IV). If the reduction terminates at a candidate triple in case (IV),

Proposition 3.46 shows that [ > my 4+ mg — ged(my, ms), and the algorithm terminates at

the generating pair (Va, ) = (% ), vé )) (Vk, Yr+1), corresponding to the candidate triple

(IN) ,m\™), gN)) = (I —my —mg+gcd(mq, msy), ged(my, ms), 0). Proposition 3.38 shows that
Yi+1 is elliptic, and the length (A, NT,,,,) =™ =1 —my — my + my. Proposition 3.19
shows that v+ remains as an endpomt of the axes intersection before the last reduction step,
and Proposition 3.38 shows that it remains as an endpoint of the axis-tree intersection at the

end. This corresponds to case (3) in Theorem 3.3 if the inequality is strict. When equality
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holds in the inequality, [ satisfies the condition for case (2a) with (j,q) = (kK —1,qx—1 — 1).
In this situation, the quantity

m; — (g + 1)myp _ M1 — Ge—17M
2 2

thus case (2a)(i) in Theorem 3.3 applies, with the correct generators (ve, Vr_17, = ')

(Vk, Vk+1) and correct axis-tree distance d = 0.

(3.58) =0,

This exhaustive case analysis completes the proof of the theorem.

Theorem 3.3

4. WEIGHTED TREES

In this section we extend our classification to weighted trees, where translation lengths are
allowed to be arbitrary positive real numbers. We prove an analogue of Theorem 3.3 in
this setting, with a dichotomy governed by the rational or irrational nature of the ratio
ms/my. In the irrational case, the exceptional intersection lengths forming non-free subgroups
constitute a discrete subset of (0, m1 + ms) and are shown to coincide with the gap lengths
appearing in the three-gap theorem. The analysis adapts the Nielsen reduction procedure to
the weighted metric setting and exploits recurrence properties of continued fractions, leading
to Theorem 4.8.

We now broaden our scope from metric trees (where every edge has length 1) to the more
general setting of weighted trees. This allows us to consider automorphism groups of a wider
class of geometric objects.

Definition 4.1. Let X be a (combinatorial) tree and let
(4.2) w:E(X)— Ry

be a function assigning a positive real number w(e) to each edge e. The pair (X, w) is called
a weighted tree.

We can metricize the tree (X, w) by regarding the weight w(e) as the length of each edge
ee€&(X):

Definition 4.3. The length of a geodesic path P, denoted by ¢(P), is the sum of the weights
of its constituent edges. This induces a natural metric on the vertex set, d(v, w) = (v, w]).
It is useful to consider the full metric realization of the weighted tree:

Definition 4.4. The geometric realization Real(X,w) of a (symmetric directed) weighted

tree is the metric graph obtained by identifying each combinatorial edge e € £(X) with a
closed interval of length w(e) and gluing at vertices in the obvious way:

(4.5) Real(X,w) = (V(X) U ( || ex [O,w(e)])) / ~,

e€é(X)
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where the equivalence relation ~ identifies, for each edge e € £(X), the point e x {0} with
o, and the point e x {w(e)} with w,.

Definition 4.6. A (metric) automorphism of the weighted tree (X, w) is an isometry

(4.7) g : Real(X,w) — Real(X,w)

of the metric space Real(X,w). The group formed by the automorphisms is denoted by
Aut(X, w).

4.1. Classification Theorem for Weighted Trees. Similarly to the unweighted case, we
can ask when two hyperbolic automorphisms 7,7, of a weighted tree (X, w) generate a free
group. Their translation lengths m; = m,,, ma = m,, and the length of the intersection of
their axes | = ((A,, N A,,) are now positive real numbers. We adopt the same normalizations
and definitions for the sequences {m;}, {¢;}, and {v;} as in the unweighted case, defined by
the continued fraction expansion of o = my/m;.

We derive the following result, which generalizes Theorem 3.3:
Theorem 4.8. Let v, be hyperbolic automorphisms of a weighted tree (X, w) with geometric
triple (I, my,mz) and let o« = my/m.

If «v is rational, then the sequence {m;} is finite and the group T' = (y1,v2) satisfies precisely
the conclusion of Theorem 3.3.

If « is irrational, then the sequence {m;} is infinite and I' falls into one of the following
cases:

(1) If L =0, then T is a free group of rank two.

(2) If 0 < I < mq + mg, there are unique integers j,q with

(4.9) (m1+mg) —m;+(qg—1)mjp <1< (myg+mo) —mj+qmj, 7>1,0<q¢<g¢qg —1.
(a) If 1 = (my 4+ ma) —my + qmyp1, then v\ is hyperbolic; set

(4.10) lo=0A, -« Nyj11.A

).
RERFES 7ﬂj+1)

o Ifly > %, then T is not free.
o Ifly < %, then I is free of rank two.
(b) If | < (mq + ma) —m; + qgmji1, then I is free of rank two.
(8) It is impossible to have | > mq + my.

Except for the impossible case (3) for irrational o, the generating pair (Ya, 1), their translation
lengths, and the relevant intersection-length or minimum-distance data match those in Table
3.7.

The proof follows the same conceptual structure as that of Theorem 3.3. We perform the
same reduction algorithm for the generating pair (71, 72) as well as the associated geometric
triple (I, my, my). The same outcome as in Lemma 3.43 and Proposition 3.46 is expected if
my and mgy are commensurable, and a key difference occurs if they are not.
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Lemma 4.11. If my/my € Q, the change of the translation lengths agrees with the description
in Lemma 3.43, where my, = ged(mq, ms) is the greatest common divisor for commensurable
real numbers. The algorithm terminates in either case (II), (III), or (IV) for I under the
same conditions as in Proposition 3.46.

If ma/my ¢ Q, the change of the translation lengths agrees with a Euclidean algorithm that
does not terminate. Nevertheless, for my <l < my + ms, there are unique integers j,q with

(412) (m1 —i—mg)—mj—i—(q—l)ij <l < (m1 +m2)—mj—|—qmj+1, j > 1, 0< q < q]—l

In this scenario, the algorithm terminates in either case (II) or case (III), depending on
whether the inequality is strict.

Proof. The only nontrivial thing to show is the guaranteed termination for ms/m; ¢ Q and
my < | < my 4+ my. By the definition of the sequence {m;} and the irrationality of the ratio,
we have that {m; + m;41} is strictly decreasing, and

Hence, for any mo < I < mq 4 mag, there exists an index j > 1, satisfying

(414) m; — (q]' — 1)mj+1 = Mj1 + mj42 <mj+my — l < m; + mMjt1.

Consequently, there further exists an integer 0 < ¢ < ¢; — 1, such that [ satisfies the claimed
inequality. The termination in either case (II) or case (III) follows straightforwardly from
this fact.

O

It remains to show that the condition ms/m; ¢ Q with [ > my + my is impossible as a
geometric triple (I, my, ms) for a generating pair in Aut(X, w).

Lemma 4.15. Suppose (X, w) is a locally finite weighted tree, (y1,72) is a pair of hyperbolic
automorphisms in Aut(X,w), (I, my, mq) the associated geometric triple, and mq/my ¢ Q.
Then one must have | < my + ma.

Proof. Assume the opposite, that [ > my 4+ msg. Let u = y1792.v, then d(v™,u) = my +mg <1,
and [v™,u] C A,, N A,,. We will derive a contradiction by constructing an infinite sequence
of distinct vertices {v;}22,, of valence > 3 on the finite geodesic segment [v™, ul:

Vo=7V .

my

d(vi-1, v‘)J .

ma

For odd i: wv; =7 -v,_y, whereq= {

For eveni: wv; =757 -v,_1, whereq= {

The length ¢([v™, u]) = my +mq ensures that d(v;—1,u) > my when i is odd and d(v;_1,v™) >
ms when 7 is even. Thus, the integer ¢ is always at least 1, and each step moves the point a
positive distance along the geodesic.
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By induction on i, one sees that d(v—,v;) = mq(k1) + ma(ks) for some integers ki, ks > 0
depending on ¢. Since 72 is irrational, these distances are all distinct (otherwise we get
my(ky — k}) = ma(kl — ko). Hence all the points v; are distinct.

However, this constructs an infinite set of distinct vertices with valence > 3 in the compact
interval [v™, ], which is impossible for a combinatorial tree. This contradiction forces us to
reject the initial assumption, proving that [ < m; + mo must hold.

U

Proof of Theorem /.8. Lemma 4.15 implies that the condition my/my ¢ Q and [ > my + my
does not occur. This corresponds to irrational case (3) in Theorem 4.8.

Except for the case excluded above, we perform the same algorithm for (v1,72) and the
associated geometric triple (I, my, ms) as described in Section 3. By Lemma 4.11, the algorithm
terminates in case (II), (III), or (IV) within finitely many reduction steps. Propositions 3.12,
3.19, 3.27, and 3.38 then imply our claim, similarly to the proof of Theorem 3.3:

e When [ = 0, the algorithm terminates in case (II) instantly, which corresponds to case (1)
in Theorem 4.8.

e When 0 < [ < msg, the algorithm terminates in case (III) instantly, which corresponds to
case (2b) in Theorem 4.8 with j = 1 and ¢ = 0.

e When my <1 < my + mg — ged(my, mso) (if my and my are commensurable) or my <1 <
m1 + me (if incommensurable), the algorithm terminates in case (II) or case (III) after
reduction, which corresponds to case (2a)(i), (2a)(ii) or (2b) for certain integers j and g.

e When m; and msy are commensurable and | > m; + my — ged(my, my), the algorithm
terminates in case (IV), which corresponds to case (3), or case (2a)(i) with (j,q) =

(k - 17Qk—1 - 1)

Theorem 4.8

As an interesting remark, the exceptional lengths in Theorem 4.8 that determine the group’s
structure are intimately related to the three-gap theorem (also known as the Steinhaus
conjecture)[11]. This theorem states that for any irrational number « and positive integer N,
the fractional parts {ic — |icr] | i = 1,..., N} partition the circle S! = [0,1]/ ~ into intervals
with at most three distinct lengths. As IV varies, the set of all gap lengths that appear for a
fixed « is countable:

Proposition 4.16 ([5], Theorem 2). Let 0 < a < 1 be an irrational number with continued
fraction expansion

(4.17) a=1[0;q1,92,43 - -].

Let a; = « and define
(4.18) i1 = ot — |a;t], Vi e N,
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Then, the set of distinct gap lengths arising in the three-gap theorem for a consists of values
j—1
(4.19) (1 —qa5) [T eu,

i=1
forany j>1and0<q<g;—1.

A connection between Theorem 4.8 and the three-gap theorem arises from the Euclidean
algorithm and continued fractions:

Corollary 4.20. In the context of Theorem 4.8, let « = my/my be irrational, and let

(4.21) Ez{(m1+m2)—mj+qmj+1|j21, OSQS%‘—l}
be the set of exceptional intersection lengths. Then the normalized set
(4.22) {1+a—(1/my)|le L}

is exactly the set of all gap lengths that occur in the three-gap theorem for the irrational
number c.

Proof. Define a; = mji1/m; for j > 1, so that oy = . The recurrence relation for the
Euclidean algorithm becomes:

(4.23) g =la7'], e =a;' —g;

This is precisely the recurrence defining the continued fraction expansion of a:
(4.24) a=1[0;q1,q2,4s,-...]

Now, consider an element of L:

(4.25) lig = (ma+ma) —m; +qmj.

It corresponds to the normalized value

l; my +msg) — I; m: — qm.;

(4.26) 1+a_ﬂ:( 1+ me) ga _ M — 4 i+l
my my my

We can express this quantity in terms of the «y:

j—1

my — 4+l m;
——— = (1l —qa;) - — = (1 — qq; o,
o (1= qoy)- 22 = (1= qe) I

(4.27)

for j > 1 and 0 < ¢ < ¢; — 1. As in Proposition 4.16, these values represent the distinct gap
lengths arising in the three-gap theorem for the irrational number o = [0; ¢1, go, - . .]. This
completes the identification.

O
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