BUSEMANN-SELBERG FUNCTIONS AND COMPLETENESS FOR
DIRICHLET-SELBERG DOMAINS IN SL(n,R)/SO(n, R)
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AsstrACT. We establish a general completeness criterion for Dirichlet-Selberg domains
in the symmetric space SL(n,R)/SO(n). By introducing and analyzing Busemann-Selberg
functions - which extend classical Busemann functions and capture asymptotic behavior
toward the Satake boundary - we show that every gluing manifold or orbifold produced
by Dirichlet-Selberg domain is complete. This result parallels the well-known hyperbolic
case and ensures that the key completeness condition in Poincaré’s Algorithm always

holds in specific cases.

CONTENTS

[L.__Introductionl

1.1. Poincaré’s Algorithm|

1.2. The Symmetric Space SL(n,R)/SO(n)|

1.3. The Main Result

1.4. Organization of the Paper

2. Preliminaries for the Symmetric Space X,,|

2.1. Poincaré’s Algorithm for SL(n,R)|

2.2. Compactifications of X,/

3. Satake Faces, Busemann-Selberg Function, and Horoballs|

3.1. Busemann-Selberg Functions and Horoballs in &’

3.2. Asymptotic Behavior of Busemann-Selberg Functions)

3.3. Finite Volume Convex Polytopes in X

4. Preliminary Lemmas for the Main Theorem|

4.1. Tangency of Horospheres to the Satake Boundaryj

4.2. Satake Face Cycles

4.3. Riemannian Dihedral Angles in Dirichlet-Selberg Domains

5._Proof of the Main Theorem
1. Part I: Behavior Near Satake Vertices of Type One]

IETZ. Part II: Behavior Near Satake Faces of Type Two|

(6. Examples of a Dirichlet-Selberg Domain|

Appendix A. An Inequality for Interlaced Sequence Deviations|
Appendix B. An Analytic Criterion for Finite Volume|

Date: November 24, 2025.



2 YUKUN DU

1. INTRODUCTION

This paper is motivated by a semi-decidable algorithm based on Poincaré’s Funda-
mental Polyhedron Theorem. The original version of Poincaré’s Algorithm addresses
the geometric finiteness of a given subgroup of SO* (n, 1). It was originally proposed by
RileyR!® for the case n = 3 and was later generalized to higher dimensions by Epstein
and Petronio™™=.

1.1. Poincaré’s Algorithm. The algorithm proceeds by employing a generalization of
the Dirichlet domain in hyperbolic n-space, as introduced in®2p=:

Definition 1.1. For a point = in hyperbolic n-space H™ and a discrete subset I’ of the Lie group
SO*(n,1), the Dirichlet Domain for Ty centered at x is defined as

D(z,Ty) ={y € H"|d(g.z,y) > d(z,y), Yg € [y},

where g.x € H" denotes the action of g € SO*(n,1) to x € H" as an orientation-preserving
isometry.

This definition extends the concept of Dirichlet Domains from discrete subgroups
to discrete subsets. Using this construction, Poincaré’s algorithm can be outlined as
follows:

Poincaré’s Algorithm for SO"(n, 1).

(1) Assume that a subgroup I' < SO*(n, 1) is given by generators g1, .. ., g,,, with
relators initially unknown. We begin by selecting a point z € H", setting [ = 1,
and computing the finite subset I'; C I', which consists of elements represented
by words of length < [ in the letters g; and g; '

(2) Compute the face poset of the Dirichlet domain D(x,I';), which forms a finitely-
sided polytope in H".

(3) Utilizing this face poset data, check if D(x,I';) satisfies the following conditions:

(a) Verify that D(z,I';) is an exact convex polytope. For each w € I, con-
firm that the isometry w pairs the two facets contained in Bis(z, w.z) and
Bis(z, w™'.z), provided these facets exist.

(b) Verify that D(x,I) satisfies the tiling condition, meaning that the quo-
tient space M obtained by identifying the paired facets of D(x,I) is an
H"-orbifold. This condition is formulated as a ridge-cycle condition, as
described in®a®%,

(c) Verify that each generator g; can be expressed as a product of the facet
pairings of D(xz,T}), following the procedure in®!53,

(4) If any of these conditions are not met, increment [ by 1 and repeat the initializa-
tion, computation and verification processes.

(5) If all conditions are satisfied, the quotient space of D(x, ) is complete®ap=>,
By Poincaré’s Fundamental Polyhedron Theorem, D(z,I';) is a fundamental do-
main for I', and I' is geometrically finite. Specifically, I' is discrete and has a
finite presentation derived from the ridge cycles of D(x, T';)Ra®4,
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The completeness condition is fundamental when applying Poincaré’s Fundamental
Polyhedron Theorem. If the quotient of the convex polytope D by its facet pairing is
incomplete, the facet-pairing transformations may generate additional relators. In the
context of hyperbolic 3-space, this phenomenon is closely related to Hyperbolic Dehn
fillings ™2,

Consider, for instance, the Meyerhoff manifold™®®, which arises from complet-
ing an incomplete gluing of a certain ideal triangular bipyramid. This manifold cor-
responds to the (5,1)-Dehn filling on the figure-eight knot complement. While the
ridge cycles of the Meyerhoff manifold provide relators for the facet pairings that agree
combinatorially with those of the figure-eight knot group, additional relators emerge
due to the Dehn filling condition,™ . Consequently, Poincaré’s Fundamental Poly-
hedron Theorem cannot fully recover the group presentation generated by Meyerhoff
facet-pairing transformations mentioned above.

Fortunately, for Dirichlet domains, the completeness condition is not a concern - as
noted in Step (5) of Poincaré’s Algorithm. The guaranteed satisfaction of the complete-
ness condition can be explained through the concept of Busemann Functions,?s>>:

Definition 1.2. Let a € OH" be an ideal point and x € H™ be a reference point. For any
geodesic ray v : R — H" asymptotic to a, and for any y € H", the limit

ba(y) := lim d(7(t),y) = d(7(t), )

exists and is independent of the choice of . This limit defines the Busemann function b, , :
H" — R.

It is well-known that the Busemann function satisfies the following asymptotic be-
havior:

e If v is a geodesic ray asymptotic to a, then lim;_, b, . (7(t)) = 0.
e If vis any geodesic ray asymptotic to a different ideal point, then lim,_, ., b, . (7(%))
0.

One considers the level sets of the Busemann functions, known as horospheres in H".
In the Poincaré disk model, horospheres are represented as (n — 1)-spheres tangent
to the visual boundary at the base points. For a finite-volume convex polytope, horo-
spheres based at its ideal vertices serve to separate the cusp parts from the remainder
of the polytope.

For Dirichlet Domains, the Busemann function exhibits the following invariance prop-
erty:

Lemma 1.1 (82%), Let D = D(x,T) be the Dirichlet Domain for a finite subset Ty C
SO*(n, 1) with center x € H", satisfying the following conditions:

e D is exact: For each g € Ty, we have g=* € Ty, and the two facets of D contained in
Bis(z, g.x) and Bis(z, g~ '.z) are isometric under the action of g.
e D is finite-volume, i.e., D N OH" is a discrete set of ideal points.
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Let a € OH" N D be an ideal vertex, and suppose g1, ..., gm € Do. Define the sequence of
ideal points inductively as follows: ay = a and a; = g;.a;,—1 for i = 1,...,m. If the following
conditions are satisfied:

e Bis(z, g;.x) contains a certain facet of D fori =1,...,m.
e The points a;, i = 0, ..., m are ideal vertices of D.
o The sequence satisfies a,, = ay.

Then the word w = gy, . . . g1 preserves the Busemann function based at a, i.e.,
baz(y) = box(w.y), Vy € H".

This invariance ensures that Cauchy sequences in the cusp region of the quotient
D/ ~ remain bounded away from the visual boundary, thereby guaranteeing the com-
pleteness condition in Step (5) of Poincaré’s Algorithm:

Theorem 1.1 (X023), Let D = D(X, 1) be a finitely-sided Dirichlet domain in H" satisfying
the tiling condition. Then the quotient space M = D/ ~ is complete. In particular, D is a
fundamental domain for the subgroup generated by its facet pairings.

This property of the Dirichlet domain simplifies the implementation of Poincaré’s
Algorithm for SO*(n, 1).

1.2. The Symmetric Space SL(n,R)/SO(n). Ourresearch seeks to generalize Poincaré’s
Algorithm, extending it to other Lie groups, particularly SL(n, R). It is well-established
that SL(n, R) acts as the orientation-preserving isometry group on the symmetric space
SL(n,R)/SO(n),B=%. We recognize this space through the following models:

Definition 1.3. The hypersurface model of SL(n,R)/SO(n) is defined as the set
Xy = Xonyp = {X € Sym,(R) | det(X) =1, X > 0}, (1.1)
equipped with the metric tensor
(A,B)x =tr(X 'AX'B), VA, B € TxX,,.

Here, Sym,, (R) denotes the vector space of n x n real symmetric matrices, and X > 0 (or X > 0)
indicates that X is positive definite (or positive semi-definite, respectively). Throughout the
paper, we adopt the bilinear form (A, B) := tr(A - B) on Sym,,(R) and interpret orthogonality
accordingly.

In this model, the action of SL(n,R) on &, is given by
SL(n,R) ~ X,, g.X =¢g" Xg.
An alternative model is also considered in the paper:
Definition 1.4. The projective model of X, is defined as follows:
X, = Kooy = {[X] € P(Sym, (R)) | X > 0}. (12)
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It is evident that the two models of the symmetric space &), are diffeomorphic.

Classic Dirichlet domains in &, are non-convex and often impractical for further
study. To overcome these challenges, our generalization of Poincaré’s Algorithm uti-
lizes an SL(n, R)-invariant proposed by Selberg!®? as a substitute for the Riemannian
distance on X,.

Definition 1.5. For X, Y € X,,, the Selberg invariant from X to'Y is defined as
5(X,Y) = tr(X7'Y).

For a point X € X, and a discrete subset I'y C SL(n,R), the Dirichlet-Selberg Domain
for I centered at X is defined as

DS(X,To) ={Y € X,|s(g.X,Y) > s(X,Y), Vg € Ty}

Dirichlet-Selberg domains serve as fundamental domains when I' < SL(n,R) is a
discrete subgroup satisfying Stabr(X) = 1,52 Moreover, these domains are realized
as convex polyhedra in &, defined as follows:

Definition 1.6. A k-dimensional plane of X,, is the non-empty intersection of a (k + 1)-
dimensional linear subspace of Sym,, (R) with X, yyp. An (n — 1)(n + 2)/2 — 1-dimensional
plane is referred to as a hyperplane of X,,.

Half spaces and convex polyhedra in X, are defined analogously to the corresponding
concepts in hyperbolic spaces® %,

For a convex polytope D in X, its faces, facets, and ridges are also defined analogously. We
denote the collections of these objects by F (D), S(D), and R(D), respectively.

Hyperplanesin &, can be realized as perpendicular planes. For any indefinite matrix
A € Sym,,(R), the set

At ={X € &,|tr(A.X) = 0},

is non-empty, and constitutes a hyperplane of X;,,F36Pui  Specifically, the boundary
of a Dirichlet-Selberg domain DS(X,I") consists of bisectors:

Bis(X,9.X) = {Y € X,|s(X,Y) = s(9.X,Y)},
for g € I'. In the form of perpendicular planes, these bisectors are expressed as
Bis(X,9.X) = (X' = (¢.X)7)".

These facts provide suitable analogs to corresponding concepts in hyperbolic spaces for
our proposed generalization of Poincaré’s Algorithm to SL(n,R).

Inkap23 3 generalized version of Poincaré’s Algorithm was proposed, adopting Dirichlet-
Selberg domains in the Dirichlet construction process. Details of this algorithm are
reviewed in Section 2
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1.3. The Main Result. The main purpose of this paper is to generalize Theorem [1.1{-
the completeness property for hyperbolic Dirichlet domains - to Dirichlet-Selberg do-
mains in &,. We focus on Dirichlet-Selberg domains of finite volume, which correspond
to lattices in SL(n,R). These subgroups play an important role among the discrete
subgroups of SL(n,R). In particular, the quotients of finite volume Dirichlet-Selberg
domains exhibit favorable structures. By exploiting these properties and extending the
approach in®a* we establish the following result:

Theorem 1.2. Let D = DS(X,Ty) be an exact partial Dirichlet-Selberg domain centered at
X € A, defined with respect to a finite set I'y C SL(3,R), and satisfying the tiling condition.
If, in addition, D has finite volume, then the quotient of D under its intrinsic facet pairing is
complete.

The proof of Theorem [1.2| proceeds by constructing a family of generalized Buse-
mann functions on X3, which possess specific invariance properties under the action of
SL(3,R). Moreover, we isolate the cusp regions of D via generalized horospheres, anal-
ogous to the hyperbolic setting. Furthermore, we formulate these Busemann function
constructions in the general setting of &;,.

1.4. Organization of the Paper. This paper is structured as follows. In Section 2, we
review the generalized Poincaré’s Algorithm for the group SL(n,R), and the compact-
ifications of X,,. In Section 3| we introduce the key construction - Busemann-Selberg
functions on &, define generalized horospheres via these functions, and study the
structure of finite-volume Dirichlet-Selberg domains. In Section 4}, we establish various
properties of Busemann-Selberg functions, horospheres and hyperplanes, which are
required for the proof of the main theorem. Section 5| presents the proof of Theorem
synthesizing earlier results. Finally, we give concrete examples in Section |6, con-
structing exact finitely-sided Dirichlet-Selberg domains in X, that illustrate our main
results.

2. PRELIMINARIES FOR THE SYMMETRIC SPACE X,

2.1. Poincaré’s Algorithm for SL(n,R). Let us recall the Poincaré’s Algorithm on X,
described in®*2P2#Pu2% analogically to the real hyperbolic case.

We start by considering the facet pairings for convex polytopes in &,,. These are
analogous to the hyperbolic case:

Definition 2.1. A convex polytope D in X, is said to be exact if, for each of its facets F, there
exists an element gp € SL(n,R) such that

F=Dngp.D,

and such that F' = g,.'.F is also a facet of D. The transformation gr is referred to as a facet
pairing transformation for the facet F.
For an exact convex polytope D, a facet pairing is a set

To={gr € SL(n,R)|F € §(D)},



BUSEMANN-SELBERG FUNCTIONS AND COMPLETENESS 7

where each facet F' is assigned a facet pairing transformation gp, and the transformations satisfy
gr = g for every paired facets F and F'.

For a discrete subgroup I' < SL(n,R), the Dirichlet-Selberg domain D = DS(X,I)
has a canonical facet pairing. Each element g € I serves as the facet-pairing trans-
formation between the facets contained in the bisectors Bis(X, g7!.X) and Bis(X, g.X),
provided these facets exist.

A facet pairing naturally defines an equivalence relation on D:

Definition 2.2. Two points X, X' in D are said to be paired if X € F, X' € F',and g;.' X =
X' for a specific pair of facets F and F'. This pairing defines a binary relation, denoted by
X =2 X'. The equivalence relation generated by this binary relation is denoted by ~.

The cycle of a point X in an exact convex polytope D with a facet pairing I', is the equivalence
class of X under the relation induced by T',.

With the preliminaries above, we introduce the tiling condition involved in Poincaré’s
Algorithm:

Definition 2.3. For an exact convex polytope (D,T'y) in X,,, the equivalence relation ~ defines
a quotient space M = D/ ~. The polytope is said to satisfy the tiling condition if the corre-
sponding quotient space M, equipped with the path metric induced from X,,, has the structure
of a X,,-manifold or orbifold.

The tiling condition can be reformulated using a ridge cycle condition, analogous to
the hyperbolic case described in®®* However, unlike hyperbolic polytopes, the dihe-
dral angles between two facets of a A;,-polytope depend on the choice of the base point.
This dependency is further explored in Subsection Nevertheless, the formulation
of the ridge cycle condition remains valid when the base point is specified:

Definition 2.4. Let X be a point in the interior of a ridge r of the polytope D. The cycle [ X] is
said to satisfy the ridge cycle condition if the following criteria are met:

e The ridge cycle [X] is a finite set { X, ..., X}, and
o The dihedral angle sum satisfies

m

0[X]=> 0(X;) =2n/k,

i=1

for certain k € N. Here, 0(X;) denotes the Riemannian dihedral angle between the two
facets containing X;, measured at the point X;.

InPu2% we reformulate the ridge cycle condition by introducing a generalized angle-

like function that does not depend on the choice of base points. This approach applies to
generic pairs of hyperplanes, simplifying the implementation of Poincaré’s Algorithm.

Using the framework explained above, we propose a generalized Poincaré’s Algo-
rithm for the Lie group SL(n, R), parallel to the classical algorithm for SO (n, 1):Kap23Du2d

Poincaré’s Algorithm for SL(n,R).
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(1) Assume that a subgroup I' < SL(n,R) is given by generators ¢, ..., ¢, with
relators initially unknown. We begin by selecting a point X € &;,, setting [ =1,
and computing the finite subset I'; C I', which consists of elements represented
by words of length < [ in the letters g; and g; '

(2) Compute the face poset of the Dirichlet-Selberg domain DS(X, I';), which forms
a finitely-sided polytope in X,.

(3) Utilizing this face poset data, check if DS(X,I;) satisfies the following condi-
tions:

(a) Verify that DS(X,I}) is an exact convex polytope. For each w € I';, con-
firm that the isometry w pairs the two facets contained in Bis(.X, w.X) and
Bis(X,w™'.X), provided these facets exist.

(b) Verify that D(X, I';) satisfies the tiling condition, which is introduced above.

(c) Verify that each element g, can be expressed as a product of the facet pair-
ings of DS(X,T}), following the procedure in®!3.

(4) If any of these conditions are not met, increment [ by 1 and repeat the initializa-
tion, computation, and verification processes.

(5) Ifall conditions are satisfied, we verify if the quotient space of D.S(X,I';) is com-
plete. If so, by Poincaré’s Fundamental Polyhedron Theorem, DS(X,I';) is a fun-
damental domain for I', and I' is geometrically finite. Specifically, I" is discrete
and has a finite presentation derived from the ridge cycles of D.S(X,I7).

We also implement the algorithm with Python, computing the face poset structure of a
given Dirichlet-Selberg domain, and checking the three conditions listed above?"2>.

Several questions arise from this algorithm. As a semi-decidable procedure, it is clear
that for a given center X € A&, and subgroup I' < SL(n,R), the algorithm terminates
in finite time if and only if the Dirichlet-Selberg domain DS(X,T') is finitely-sided. It
remains unknown whether this condition holds for nonuniform lattices®®%. Davalo
and Riestenburg™®** showed that uniform lattices in SO(n — 1, 1), when regarded as
subgroups of SL(n,R) via the canonical inclusion

SO(n —1,1) = SL(n,R),

do not admit finitely-sided Dirichlet-Selberg domains for any center. This result gives
a negative answer to Kapovich’s question on whether Anosov subgroups always admit
finitely-sided Dirichlet-Selberg domains.

Davalo and Riestenburg also considered the |log w;|-undistorted subgroups of SL(2n, R),
proving that these subgroups admit finitely-sided Dirichlet-Selberg domains for ev-
ery choice of center. The [log w;|-undistorted property holds for the Schottky groups in
SL(2n,R) we constructed in"#*, but does not extend to subgroups of SL(2n — 1, R).

Another question concerns the completeness condition for Dirichlet-Selberg domains
in A,,. This condition is required by Poincaré’s Fundamental Polyhedron Theorem and
holds for all hyperbolic Dirichlet domains with the tiling condition (see Theorem 1.)).
Kapovich conjectured an analogous property holds for Dirichlet-Selberg domains:
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Conjecture 2.1 (22, Let D = DS(X,T) be a finitely-sided Dirichlet-Selberg domain in X,
satisfying the tiling condition. Then the quotient space M = D/ ~ is complete. In particular,
D is a fundamental domain for the subgroup generated by its facet pairings.

This conjecture motivates our main result, which establishes the same conclusion
under the additional hypothesis that D has finite volume.

2.2. Compactifications of X;,. In this paper We employ several compactifications of the
symmetric space X),. In particular, the Satake compactification arises naturally from
the polyhedral structure of Dirichlet-Selberg domains, while the visual compactifica-
tion is essential for studying the geometry and completeness of X,,-manifolds.

Satake™® introduced a family of compactifications of symmetric spaces associated
to faithful finite-dimensional representations of the ambient Lie group. The standard
Satake compactification of A;, corresponds to the identity representation of SL(n,R)
and admits the following description via a projective model®1%:

Definition 2.5. The standard Satake compactification of X,, is
%, = {X € P(Sym,(B) | X >0},
endowed with the projective topology on Sym,,(R). The Satake boundary is
OsX, = X, \X,.
When the context is clear we shall omit the superscript S and simply write X,,.

Proposition 2.1 (P1%). The standard Satake compactification decomposes as

n—1
X, =X, u| | (SL(n,R)A),

k=1
where each X, = SL(k,R)/SO(k) embeds into s X,, via

Xk — Yna X = dlag(Xv On—k)a
and SL(n,R) acts by congruence on the set of semi-definite matrices.

More generally, for any g € SL(n,R) and £ = 1,...,n — 1, the image ¢.X}, C JsX,
is called a Satake boundary component. Under the projective model, g.&), identifies
with the set of positive semidefinite n x n matrices of rank £ whose column space is the
k-subspace

span(g.eq,...,g.ex) C R".

We denote by 05(V') the boundary component corresponding to a linear subspace V' C
R", and we say its type is k = dim V. If V' = span(vy, ..., vi), we write

85‘/ = 85(V1, Ce ,Vk>.
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Whenever W C V, the boundary component ds(W) lies in the boundary of ds(V'); we
express this by 0s(W) < 0s(V'), and write ds(W) < 9s¢(V) if W C V. The compactifica-
tion of Js(V') is the disjoint union of all subordinate components:

9s(V) = || as(m).
wCv
Dually, the star of ds(V') consists of those components whose subspaces contain V:
st@s(V) = || 9s(0).
UDV,UCR™
Since all type-k components lie in a single SL(n, R)-orbit, each d5(V) is diffeomorphic
to the symmetric space X},. More precisely:

Definition 2.6. Let V' C R" be a k-dimensional subspace and choose an orthonormal basis
vy = (v, ...,v5) € R, Define

L; aly
(det (] o Lv))l/k

This extends to a projection my : X, Ust(0g(V)) — Aj. In the projective model one similarly
obtains

VIRV 8S(V) — Xk, Wv(CY) =

v X, — XA, Wv()?) =1l Xuy.
The map my is well-defined up to the action of SO(k).

As with any non-compact symmetric space, X, admits a visual compactification ob-
tained by adjoining equivalence classes of geodesic rays.

Definition 2.7 (£, A geodesic ray in X,, may be written as
v(t) = g.exp(tA), g€ SL(n,R), A€ sl(n,R), AT = A.
Two rays 1,7, are equivalent, v, ~ 7, if

Timy o0 (71(£), 72(t)) < 0.

The visual boundary 0, X, is the set of equivalence classes of geodesic rays in X,,, and the
visual compactification is

ZOO =X, U aoo')C‘na
endowed with the cone topology.

The visual boundary 0. X,, carries the structure of a spherical building, identified
with the complex of flags in R".

Definition 2.8 (®H1¥). The complex of flags in R™ is the simplicial complex whose k-simplices
correspond to flags
Vo=VicV,C--- C Vi1 CRY,

fork =0,...,n — 2. The facets of a k-simplex are obtained by deleting one subspace from the

flag.
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Proposition 2.2 (®H13), There is an S L(n, R)-equivariant bijection from 0., X, to the complex
of flags in R". Concretely, if A has distinct eigenvalues \y > --- > X\, with corresponding
eigenspaces W1, ..., Wy, then the ray v(t) = g. exp(tA) determines the flag

grWiCcgtWieWy) C---Cgh e W Cc R

In particular, the vertices of 0., &, correspond to linear subspaces V' C R". We de-
note the ideal vertex associated to V' by ¢y and call its type k = dim V. Moreover, for
each subspace V' C R", the stabilizer of 0s(V) C 054, in SL(n,R) coincides with the
stabilizer of &, namely the maximal parabolic subgroup preserving V%,

3. Satakk Faces, BuseMaNN-SELBERG FuNncTIiON, AND HOROBALLS

In this section we extend the classical Busemann function to define Busemann-Selberg
functions and their level sets (horoballs) in &,,. We then examine the polyhedral struc-
ture of finite-volume Dirichlet-Selberg domains and introduce the notions of Satake
boundary components and Satake faces of such domains. These constructions are es-
sential in the proof of our main theorem.

3.1. Busemann-Selberg Functions and Horoballs in X),. The classical Busemann func-
tion is defined as a limit of distance differences in hyperbolic space (see Definition[I.2)).
We generalize this concept by replacing the hyperbolic distance by Selberg’s invariant
s on the symmetric space X,.

Definition 3.1. Let X € X, and o € 0sX,,. Choose any path A(t) C X,, with
tliglo At) = a.
The (type 0) Busemann-Selberg function based at o with reference point X is

. s(Y A(t
box: X, >Ry, bax(Y)= g&ﬁ'

Remark 3.1. If « is represented by a singular positive semi-definite matrix (also denoted o),
one obtains the closed-form

(Y la)
C tr(Xla)’

which is independent of the choice of matrix representative for c.

ba,X (Y) VY € Xn;

The proof of the main theorem requires the following generalization of the Busemann-
Selberg function, obtained by composing a type-0 Busemann-Selberg function with the
projection onto a Satake boundary component.

Definition 3.2. Let X € X,, and 11 is a boundary component of type n — k. Suppose « lies on
011, so that rank(«) < n — k. Let
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be the projection associated to I1 (cf. Definition[2.6]). The type-k Busemann-Selberg function
based at (o, IT) with reference point X is
_ (@Y (a))
- tr(m(X (@)
In concrete terms, if ti; € R™"*("*) has orthonormal columns spanning II, one checks
6 (v — tr(Y ") det (1Y i)~V (R
H;O"X< )= tr(X o) det(¢ef X —tepg) Y (=k)"
If one replaces u; by v Q with @ € SO(n — k), then
det((1nQ)" X (1 Q)) = det(Q)* det (1, X er) = det (¢, X i),

k k —1\—
it * X = Ry b, (V) = brgaymoe 1 (w(Y )7

(3.1)

so that b%k)a « is well-defined.

Example 3.1. Let I = 9s(ey, ex) C X, a boundary component of type 2 consisting of matrices
with vanishing third rows and columns. Let o = e, ® ey, a component of type 1 (i.e., a Satake
point) on the boundary of I1. Then, for X = (z") ' and Y = (y")~!, the type one Busemann-
Selberg function is given by

(1) B yll/\/ynyzz _ (y12)2
bH;avX(Y) T 11,22 12)2°
NCr=

Busemann-Selberg functions can be expressed in terms of the classical Busemann
functions b¢ x. In particular, when « is a rank-one Satake point, the logarithm of a
(type-k) Busemann-Selberg function decomposes as an explicit linear combination of
the corresponding Busemann functions.

Proposition 3.1. Let I1 = 0g(V') be a boundary component of type (n—k) > 2, and o = v@v
be a Satake point on OI1 (so v € V). Denote by &, and &y the corresponding vertices in the
visual boundary O X,,. Then for all X|Y € X,;:

n—1

lOg ba,X(Y) = n bgv,)(<Y),
-1 k
log b (V) = \/T——be, x (V) = | ————bey x (V).
og by, x (V) —be, x(Y) o p—— ev.x(Y)
Proof. By SL(n,R)-equivariance we may assume v = e; and V' = span(ey, ..., €, ).
Explicit formulas in™a® give
o Yy n Y
b Y)=4/——=log——, b Y)= 1
evx (V) n—1 0 X v x (V) kn—k) C X,

where Y[Jl denotes the i-th leading principal minor of Y ~'. One checks directly that

these equalities coincide with the ratios defining b, x and b(rﬁ )a -, yielding the claimed
linear relations. 0
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Since higher-rank o decompose as sums of rank-one matrices, every Busemann-Selberg
function (of any type) can be written in terms of the original Busemann functions b x.

The main result in this subsection is the following 1-Lipschitz continuity for Busemann-
Selberg functions.

Proposition 3.2. Let Il and « be as above, and any X, Y1,Ys € X,,. Then

n—k—1
Uogb(r?a,x(yl) longaX( o) < Tk

Lemma 3.1. The projection 7 : X,, — X,,_, from Definition [2.6|is 1-Lipschitz, i.e.,
dx(¥h), 7(Y)) < (3, Ya).

Proof. Without loss of generality, take Y7 = I,,. Since 7 is conjugation by an orthonormal-
column matrix ¢, we have 7(Y}) = 1Tt = I,,_;. Hence it suffices to prove

'YL
d ( L, < d(In,Y),
( g det(LTYL)l/("k)> ( )

where Y = Y,. Let \y > --- > X, be the eigenvalues of Y, and let yt; > --- > p,_ be
those of Y. By the Poincaré separation theorem,

)\i Z,LLZ 2>\i+k7 z:l,,n—k
Then, using Lemma in the Appendix and ) ,log \; = 0, one obtains
A (Lyp, Y1/ det(LTY )Y/ (=R

_Zlogm log 11)? <Zlog>\ )2 =d*(1,,Y),

which gives the de51red bound. O

Proof of Proposition For k = 0, the 1-Lipschitz continuity for b, x with rank(a) = 1
follows from Proposition Any higher-rank o decomposes into rank-1 summands,
so the result extends by linearity.
For k£ > 0, one reduces to the type-zero case in X,,_;:
[Tog bir, x (Y1) — log bty x (V2)
= |10g b7r(oz),7r(X*1)’1 (ﬂ(}/i_l) ) - IOg bTr(oz)JT(X*l)’1 (T‘-(YVQ_l)_lﬂ

<R T ().
Since d(Y3,Ys) = d(Y;,Y; ') and by Lemma[3.1]

dr(YV) T a(Yo ) ) =dr( ), m(Yp ) <d(Y LY, ) = d(Y, Ya),
the proposition follows. O

We shall refer to the sublevel sets of the Busemann-Selberg functions as horoballs,
and their level sets as horospheres.
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Definition 3.3. Let o € 0sX,, be a Satake boundary point and fix a reference point X € X,,.
For each r € Ry, the closed horoball based at o with parameter r is

B(a,r)={Y € X, | bpx(Y) <r}.

Replacing “<” by “<” yields the corresponding open horoball.
The horosphere at level r is the level set

Y(a,r) ={Y e X, | box(Y) =1}
This construction generalizes to higher-type settings:

Definition 3.4. Let II be a boundary component of type n — k, let o € 011, and fix X € X,,.
For each r € Ry, define the k-th horoball at (o, IT) by

By (a,r) = {Y € &, | by, x (V) <7},
and the corresponding k-th horosphere by Similarly, the based at (11, o) with parameter r is
defined as

S (a,r) = {Y € &, [ b)), (V) =7}

We illustrate these horospheres by restricting to the 2-plane of diagonal matrices in

X, with vertices e; ® e;,7 = 1,2, 3:

e3 ®es e3 ®es

e ®ep e ® ey e ®e; e ey

FiGure 3.1. Left: horospheres ¥(e; ® ey, r) for varying .

Center: horospheres ¥(e; ® e; + e, ® ey, 7).

Right: type-1 horospheres Egls)(ehe{z)(el ® e1,r) and Egs)(ehe?))(el ® e,T)
superimposed.

3.2. Asymptotic Behavior of Busemann-Selberg Functions. In this subsection, we de-
scribe the asymptotic behavior of the Busemann-Selberg functions near the Satake bound-
ary of A,.

Recall that in hyperbolic geometry, the Busemann function b,(y) at an ideal point a
diverges to +o0o whenever y approaches any boundary point other than a. Analogous
phenomena occur in the higher-rank symmetric space A;,.

Lemma 3.2. Let IT C X, be a boundary component of type n—k, pick a € 011, and fix X € X,,
Suppose € 0sX,, satisfies

Col(a)\ Col(B) # @ and Col(I1) N Col(B) # .
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Then forany Y € X,
: (k) —
Elir& brp x (B + €Y) = o0

Proof. After an SL(n,RR)-action, we may assume
Col(IT) = span{ey,...,e,—x}, Col(a)=span{e;:i€ A}, Col(8) =span{e;:j € B},

where A, B C {1,...,n},with A\ B#@butBN{l,...,n—k} # 2.
Write
(B+eY) ™t = M_ et + My + Ofe).

The coefficient matrix M_; of the leading term is semi-positive definite, while its re-
striction to Col(a)\ Col(p) is positive definite. Hence

(8 +€¢¥) ) = O(e )

with a positive coefficient.
On the other hand, let v = (ey, ..., en—_x)). Since Col(II) N Col(B) # @, the principal
(n — k) x (n — k)-minor of M_; has at least one zero row and column. Therefore

det(17; (8 + €Y) i) = o(e= ™M),

Putting these estimates together,

6% (B + V) o tr((B + €¥) ) det(y (B + V) Lug) MDD o
as claimed. O

Differing from the hyperbolic case, the higher-type Busemann-Selberg functions on
&, can tend to zero as points approach certain boundary strata.

Lemma 3.3. Let Il C X, be a boundary component of type n — k, choose o € I, and fix
X € X,. Suppose 8 € 0sX,, satisfied

Col(a) C Col(B) and Col(I1)\ Col(B) # &.

Then forany Y € X,
lim by (B +€Y) = 0.

04
Proof. After an SL(n,R)-action, assume

Col(IT) = span(ey,...,e,—x), Col(a) =span{e;: 1€ A}, Col(5) =span{e;:j € B},
with A C Bbut{l,...,n—k} \ B+# 2.

Writing
(B+eY) ™t = M_jet + My + O(e),
one sees that M/_; vanishes on the columns indexed by B. Since Col(«) C Col(3),
tr((B +eY)ta) = O(1),

with a positive €” coefficient.
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Meanwhile, let t; = (eq, ..., eq_r)). Because Col(II)\ Col() # @, the principal (n —
k) x (n — k)-minor of M_,; is nonzero and semi-positive definite, and the minor of )/
is positive definite. Thus

det (11 (B + €Y) ") = o(1).

Therefore
bl (B +eY) cctr((B + €¥)'a) det(iy (B + €¥) L) MR 5
as desired. O

Two further asymptotic phenomena reveal the rich nature of Busemann-Selberg func-
tions. The first arises when the point approaches the star of the corresponding bound-
ary component.

Lemma 3.4. Let I1 < = be boundary components of types n — k < n — lin X,,, and let
T X, Ust(E) = X,y
be the canonical projection. Pick o € 011, B € =, and fix X € X,,. Then foreachY € &,

lim bl x(B+e) =0l e (T(B)).

e—0

In particular, if Il = =, the limit is a Busemann-Selberg function of type 0.
Proof. Denote by
(A, Ust(Il)) = X, Ust(n(Il)) — X—x
the canonical pro]ec’aon so that m; o 7 projects X, U st(II) to X,,_j. We first show
lim w(3+)7) =n(3)"
Under the SL(n,R)-action, we assume

— . Y1 Y;
:':as(e17"'7en—l)7 ﬂzdlag<ﬂl70)7 Y: ( }/jl' }é )
with £, Y] € Sym,_;(R), Y3 € Sym,;(R). Then

(8 +ev) (@+%'%)4:( B+ 0(9) —@Wwf+ma)

€Y,  €Ys YA 4+ 0() 'Y+ O(1)
Hence, )
. - ﬁl _ 1

It follows by continuity of trace and determmant that

hm b%ka “(B+eY) = lim tr(my (7((8 4 €Y) "))

e—0 =0 tr(m(r(X 1) m(r(a)))
~ lim tr(m(r(8) )m(r(a) _  x-p -
= B (X m(r(a))) ey (7))
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Example 3.2. Let II = Os(ey,€3) C 0sX3, X = I3, and a = e; ® ey; let Xy = Iy, and
ap = e ® ey € . H2 Foreach 5y € Xy = H? with 8 = diag(5y,0), and for any Y € X,

lim by}, (8 + €Y) = bag x, (Bo)-
€—>0+ 77

In the second case, the Busemann-Selberg function diverges because its limit depends
on the direction of approach to the boundary.

Lemma 3.5. Let II < = be boundary components of typesn —k <n — lin X, and let

T X, Ust(E) = X,y
be the canonical projection. Let o € OII, § € 0s&,, and fix X € X, satisfying Col(f) @
Col(Z) = R™. Then for every Y € X,

. k k-l
hm b%‘[,)a,X(ﬁ + GY) = b;(n))ﬂ(a)m(x—l)—l(W(Y>)'

e—04 ;
In particular, if Il = =, the path limit is a Busemann-Selberg function of type 0.
Proof. Conjugate so that

_ . i Y
==90 e n—1), =d O, s Y = )
s(er,....en), B iag (O, f3) ( VANDA )
where (3,Y; € GL(I[,R) and Y; € GL(n — [, R). The block-matrix inversion shows
Giayi—( G @ N Vo) Vst +0(
T\ &Yy BsteYs Y, Y85+ Ofe) B3' 4+ O(e) '

Hence
lim 7((84€¢Y)™ ) =n(Y)"".

E—)0+

The remainder of the argument follows exactly as in Lemma 3.4} by continuity of trace
and determinant in the definition of b%k)a X O

Example 3.3. Let IT = Jg(ey, e3) C Xy, X =L a=e Qe and f =e;Qes. Let Xy = I,
and oy = e; ® e; € H2. Then for any Y € X5, with Y, € H? being its projection to the first
two rows and columns, we have

lim b} (8 + €Y) = bay x, (Y0).
E%O+ 7

To conclude, we summarize the behavior of b(rf)a  to the Satake boundary.

e Col(ar) C Col(B) Col(a)\ Col(f5) # &
Conditions - 1eoI(3) £ & | Col(iT) C Col(B) | Col(3) A Col(IT) = & | Col(3) 1 Col(TT) £ &
; (k)

hm(fgg: gl;:)ax 0 brerm(x—1)-1 (7)) | Brgarmx—1y1 (w(Y)) 50
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3.3. Finite Volume Convex Polytopes in &),. A convex polytope D C X, is by defini-
tion the intersection of finitely many affine half-spaces in Sym,,(R) with the hypersur-
face &), nyp. Equivalently, one may view

D=Dn Xn,proj>

where D C P(Sym,(R)) is a projective convex polytope with finitely many faces.

In Proposition |B.1)in the Appendix, we show that D has finite volume (with respect
to the Riemannian metric on &,,) if and only if its corresponding projective polytope
D lies entirely inside the Satake compactification X,,. We therefore adopt the following
equivalent criterion:

Definition 3.5. A convex polytope D C X, is said to have finite volume if there exists a
projective polytope D C X,, C P(Sym,,(R)) such that
D=Dn4&,
In this case, D is the Satake compactification of D, denoted D = D.
The Satake boundary of D is then
0sD = Dn OsD.

Since 03&,, decomposes into boundary components indexed by subspaces of R", the
same holds for 0sD:

Definition 3.6. Let D C &, be a finitely-sided convex polytope of finite volume. For each linear
subspace V' C R", define the Satake boundary component

Oy = dsD N ds(V),

where 0s(V') is the corresponding component of 0sX,,. The integer k = dim V' is called the type
Of va.

It is immediate that the closure of a boundary component decomposes into smaller

strata:
oy = | | ow.
wcv
Furthermore, the Satake boundary of any finite-volume, finitely-sided polytope admits
a natural combinatorial description:

Proposition 3.3. Let D C &, be a finitely-sided convex polytope of finite volume, with Satake
compactification D. Then for each nonempty boundary component ®, C dsD, its closure ®y
is a face of the projective polytope D.
Proof. Write

D = convi{ay,...,an},

where each vertex a; € X,,. Let V =C R" be a subspace such that &, = dsD N ds(V) is
non-empty, and

I={i|a; €0s(V)}.
We claim:
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e The convex hull conv({a;}ics) is a face of D.
e This convex hull coincides with @, .

To prove the first claim, note that a € ds(V) if and only if the associated bilinear form
vanishes on V*. For each j ¢ I, the kernel of a; in V' is a proper Zariski-closed subset,
so we can choose u € V+ and € > 0 such that

T

u'aqu=0 (i€l), and u'

aju>e (j¢1).
The hyperplane {« | u'au = 0} separates conv({e;}icr) from conv({a;};¢r), proving
that the former is indeed a face. o o

For the second claim, observe that &, = d5(V') N D is convex and contains all a;; with

i € I, s0 conv({a;}ics) € ®y. Conversely, any point of @y is a convex combination

of the vertices a, ..., a,,, but the above separation also applies to @y, implying that
vertices with j ¢ I cannot appear in such combinations. Therefore ®y = conv({«;}ier),
as claimed. O

From this it follows:

Corollary 3.1. Let D C &, be a finitely-sided, finite-volume convex polytope. Then:
e There are only finitely many subspaces V' C R™ for which ® # &. Equivalently,

0sD = | | @y,
vey
is a finite disjoint union.

e For each nonempty boundary component ®y of type k = dim(V'), its image under the
canonical identification my : 0s(V') — X}, is again a finitely-sided convex polytope of
finite volume in X,

e The Satake boundary of v (®v ) decomposes as

as’ﬁv(q)v) =Ty ( |_| CDW) .

Wev, Wev

We call any face of a boundary component & C 9dsD (including & itself) a Satake
face of D, and denote the set of all Satake faces by Fs(D).

4. PReLIMINARY LEMMAS FOR THE MAIN THEOREM

Let D be an exact hyperbolic Dirichlet domain satisfying the tiling condition, and let
M = D/ ~ be the associated quotient manifold (or orbifold) by gluing up the facets.
The completeness of M follows from two facts:

e Balls centered in the thick part of M are compact up to the injectivity radius.

e Lemmal|l.1/implies that the thin part of M consists solely of cusps, which like-
wise admit compact neighborhoods.

In this section, we show that an analogous structure holds for the thin part of a finite-
volume Dirichlet-Selberg quotient in &;,.
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4.1. Tangency of Horospheres to the Satake Boundary. Inhyperbolic space, any horo-
sphere based at an ideal point a € H" meets the visual boundary only at @, and does
so tangentially. A similar tangency phenomenon occurs for horospheres in X,,, with
additional cases to consider.

Proposition 4.1. Let o € 0sX,, lie in the boundary component 11, and fix r > 0. Denote the
closed horoball and its boundary by

B=B(a,r), ¥ =3%(a,7), X =0B.
Then:
o The horosphere meets the Satake boundary exactly along the closure of the star of 11:
¥ N dgX, = st(I).
e For each Satake point 3 € st(I1), the hypersurfaces 3 and s X,, are tangent at j3.
Proof. Boundary contact. Let 5 € 0sX,,. By the asymptotic lemmas of Subsection

o If 5 € st(II), then Col(3) D Col(w), so b,(Y) — 0asY — . Hence § € B(a, 7).
o If 5 ¢ st(II), then in any neighborhood of 3, b,(Y) — +o00 along any approach
direction, so 5 ¢ B(a,r).
This shows

¥ N sk, = BN adsX, = st(I).
Tangency. Fix § € st(II). Conjugate so that

g= (% 9 g ecqrm-1LR).
0 0
Write a general tangent direction at 3 in projective coordinates as

A AF

With reference point X = I,,, the horosphere ¥(«, r) is cut out (in projective space) by
fY) = (tr(aY))" — r"(detY) )
Expanding f(3 + tA) for small ¢, the dominant term in r"(det(8 + tA))" ' is
r"(det(By) det(Asg))"~ DL

while (tr(a(8 + tA)))" has strictly higher order in ¢. Thus A lies in the tangent cone to
Y if and only if
det(As) = 0.

On the other hand, the Satake boundary ds4,, in projective coordinates is the hyper-
surface det Y = 0. Its linearization at 3 likewise vanishes on exactly those A for which
det(Ag) = 0.

Hence at each 3 € st(II), the two hypersurfaces ¥ and 95X, share the same tangent
cone, proving they are tangent. u
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We have a more generalized tangency property for higher-type cases.

Proposition 4.2. Let = C X, be a boundary component of type n — k, and let I < = be
a smaller boundary component containing a Satake point «.. For each r > 0, denote the k-th
horosphere and its boundary by

B=BP(a,r), T=3P(a,r), ¥ =0B.
Then:
o The horosphere meets the Satake boundary at:

S8, = st (| Eo\ BE (@),

E0>E

where each =y > = is a boundary component of type n — | and Bék*l)(a, r) is the
corresponding (k — [)-th horoball.
e For each Satake point

the hypersurfaces ¥ and 05X, are tangent at f3.

Proof. Boundary contact. By the asymptotic lemmas of Subsection[3.2} any Satake point
# falls into exactly one of the following cases, determining whether 3 € B:

o If 5 € st(Il) \ st(Z), then Col(8) 2 Col(a) and Col(Z) ¢ Col(B), so bl (Y) — 0
asY — f,and thus § € B.

o If 3 € st(Z), then Col(3) 2 Col(Z) and bE) (V) — bl (7(8)) as Y — B, s0
B € B precisely when that limit is < r. 7

e If 5 is not in the closure of previous cases, b(EkL(Y) — 400 along any approach,

so 3¢ B.

To see tangency, fix any such 3 € ¥ N 0gX,. Similar to the previous lemma, a tangent
vector A € T3P (Sym, (R)) lies in the tangent cone of 3 if and only if it lies in that of either
the equation {Y | det(r=(Y)) = 0} or the boundary defining inequality of X,,. But the
latter hypersurface entirely contains &, making the two tangent cones coincide. This
proves the tangency of 3 and dg4,,. O

4.2. Satake Face Cycles. In hyperbolic geometry, a finite-volume manifold A is com-
plete precisely when each cusp link L]a] is a Euclidean isometry manifold, i.e. the holo-
nomy similarity transformation of every generator of 7 (L[a]) lies in the Euclidean isom-
etry group®a®#¢0l22 This condition is satisfied by Dirichlet domain quotients, where
each ideal cycle preserves the corresponding Busemann function b,%%,

We generalize this to &, by defining cycles of Satake faces and proving they preserve
Busemann-Selberg functions.
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Definition 4.1. Let D C X, be a finite-volume, finitely-sided polytope. Denote by F (D) its set
of (ordinary) faces, and by Fs(D) its set of Satake faces, each Satake face ® lying in a boundary
component II.

e We say a Satake face ® € Fs(D) is incident with a face F € F(D)if ® C F.

e More precisely, the pair (®,11) is incident with F if ® C F N1, and it is precisely
incident if ® = F N1L.

o A pairing of two Satake faces ®, &' € Fg(D) is given by a facet-pairing isometry gp
so that

$CF, &CF (F=g'F), g'd=a.

We write [®] for the equivalence class of  under such pairings.

o A cycle of the Satake face  is a finite sequence {®g, 1, ..., D, } of faces in [P] with
Oy = ¢, = ®, and isometries g; so that ©; = ¢;.®,_1 fori =1,...,m. The product

w = g192° gm € SL(n,R)
is called the word of the cycle.

Below is our generalized preservation property for usual Busemann-Selberg func-
tions under Satake face cycles.

Proposition 4.3. Let D = DS(X,I'y) C X, be a Dirichlet-Selberg domain satisfying the
hypotheses of Theorem and let ® be a Satake face of type n — k. Suppose {®¢, 1, ..., P, }
is a cycle of ® with associated word

W= gigs - gm € SL(n,R).

Then:

o The action of w on the boundary component span(®) has finite order.
o There exists a Satake point o in the relative interior of ® such that w.ae = ae.
e ForeveryY,Z € &,

bag,z(Y) = bay,z(w.Y).
Proposition 4.3|rests on the following equivariance lemma.

Lemma 4.1. Let g € SL(n,R), fix X € X, and let o € 0sBis(X, g~ '.X). Then:
(1) tr(Xta) = tr( X Hg.a)).
(2) ForallY € X,

bmx(Y) = bg.a,X (gY)
Proof. Since « lies in the Satake boundary of the bisector Bis(X, g~ *.X), one has
tr(X ') = tr((g7'. X)) = tr(gX g a) = tr( X (g.a)),

proving (1).
For (2), note

tr((g.Y) ' (g.a)) =tr(g7'Y (g ") g ag) = tr(g7 'Y lag) = tr(Y ).
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Hence

_ a7 () _ u((gY) N (g-a)) _
Pox¥) = 0 T@) T uXigay  eer@d)

g

Proof of Proposition Let {®g, ®y,...,P,,} be a cycle of the Satake face ®, with ¢; =
gi-®;_1fori=1,...,mand ¢, = ¢,, = . For any interior point £ € span(®), set, =¢,
fi :gi'&_lfori: 1,...,m.

Since each g; pairs facets of the Dirichlet-Selberg domain, we have &,_; € ®,_; C
Bis(X, g; ' X). By Lemma

tr(X 1) = tr(X 7 (g5:&i-1)) = tr(XTE).

Iterating gives
tr(X 1) =tr(X H(w.€)), w=g1 " Gm. (4.1)
Finite-order on the boundary component. Conjugate so thatspan(®) = ds(eq, ..., e,—x),
and let 7 : &, U st(span(®)) — X,_; be the projection dropping the last k£ coordi-
nates (with determinant normalization). Then w preserves span(®), and its restriction
n(w) € GL(n — k,R) is a nonzero multiple of an X,,_;-isometry.
Define
tr(X71¢)
 det(1g L)/ (R’
where (¢ is the n x (n — k) matrix selecting the first n — k coordinates. Then by (4.1),

B tr(X 1 (w.£))
s(w.ﬁ) - det(ﬂ'(w).(WTfW))l/("fk)
_ (X ¢) s
Aot (r(w)) PR det(WTEW) TR~ Tdet((w)) PP

On the other hand, s attains a unique minimum at o = diag(m(X )™, Oy,). Uniqueness
forces w.oo = o and |det(7(w))| = 1. Hence m(w) lies in the compact subgroup O(n — k)
and, because it preserves the polytope 7(®), has finite order.

Existence of a fixed Satake point. If (7(w))! = I,,_; for some [ > 0, then the barycen-
ter of the orbit {&, m(w)¢, ..., m(w)' 71} is a m(w)-fixed point in the interior of ®. Lifted
back to &, this yields the desired as.

Preservation of the Busemann-Selberg function. Write oy = a¢ and o; = g;.c;_1.
By Lemmaft.T} for every Y € &,

bthX(Y) = bgbaifl:X(gi'X) = bai,X(gi'Y)‘

Iterating from ¢ = 1 to m and using «,,, = o gives

ba%)((Y) = b%,x(w.Y),
and replacing X by any Z € &, preserves the equality. O

s:span(®) —» R, (&)

A similar preservation property holds for higher-type Busemann-Selberg functions
as well.
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Proposition 4.4. Let D = DS(X,Iy) C A, be a Dirichlet-Selberg domain satisfying the
hypotheses of Theorem Let ® be a Satake face of type n — k, and U be a Satake face of type
n — lwith | < k such that ¥ > ®. Denote by 11 = span(WV) the corresponding boundary
component.

If w is the word of a common cycle of both ® and V, and if e € © is a w-fixed interior point
(cf. Proposition[4.3)), then for all Y, Z € X,

l l
bl(_[?aq;,Z(Y) = bl(_[?aq;,Z(wY>

Proof. Recall from (B.I)) that
b, 2(Y) = baz(Y) det(ef;Y o) "7,

where ¢y is the n x (n — ) matrix whose columns span II. By Proposition 4.3} the usual
Busemann-Selberg function b, 7 is w-invariant:

baq),z(Y) = baq,,z(w : Y)
It remains to check
det(sY " tapr) = det(¢f;(w.Y) " ap).
Since w preserves the boundary component U, its action on ¢y satisfies
(w") g = tpw’,w’ € GL(n — I, R).

In fact, matrices W and (w") ='W represent boundary components ¥ and w~!.¥, which
are assumed to be the same component. Therefore, Hence

det (¢ (w.Y) o) = det(((w ") o) TY (w0 ") i)
= det((tqw’) Y " (epw')) = det(w’)? det (¢ Y " in).

Finally, Proposition 4.3 ensures that 71;(w) has finite order, so det(w')? = 1. Therefore
the two determinants agree, and the [-th Busemann-Selberg function is w-invariant. [

4.3. Riemannian Dihedral Angles in Dirichlet-Selberg Domains. For Dirichlet do-
mains in hyperbolic spaces, a critical property is the independence of Riemannian di-
hedral angles from base point choices. While this fails for Dirichlet-Selberg domains in
A&, understanding the dependence of this angle on the choice of base point is crucial
for the proof of the main theorem.

As we defined earlier, a plane P C X, of codimension £ is a non-empty intersection
of k linearly-independent hyperplanes. In addition, each of these hyperplanes is a per-
pendicular plane for an indefinite matrix A € Sym,, (R). Therefore, the plane can be

described as .
P = (ﬂ Af) = span(Ay, ..., Ap)*.

=1
In a Dirichlet-Selberg domain, a pair of adjacent faces of codimension k spans two
planes P and P’ that intersect along PN P’ of codimension k + 1. They can be described
as
P =span(Ay,..., Ay_1, B)*, P =span(Ay, ..., Ap_1, B)*, (4.2)
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for linearly independent indefinite matrices A, ..., A;_1, B, and B’ € Sym,,(R).

Lemma 4.2. Let P and P’ be planes described as in ([4.2)). Then, for any point X € PN P/,
the Riemannian dihedral angle £ x (P, P') is given by:

L (P.P) = arceos (A=) B (A A) A B
\/H /\“A /\BH H(/\k1A>/\B’

where (-, -) x -1 denotes the inner product, and ||-|| x -1 the norm, on the exterior algebra \*(Sym,, (R))
induced by the inner product on Sym,,(R):

<A1, A2>X*1 = tI’(XAlXAQ)7 VAl, AQ € Symn(R)

X—l

Proof. In the hypersurface model, the tangent space 7x P is a subspace of Tx R +1)/2,
TxP = {C € TxR""™/2 |tr(4,C) = 0, tr(BC) = 0, tr(X'C) =0}.
Similarly:
TxP' = {C € TxR"" 2 |t2(A:C) = 0, tx(B'C) =0, tr(X7'C) =0}

Recall that the dihedral angles between linear subspaces of TxR""*1/2 are measured
by the inner product given by the Killing form:

(C,C")x = tr(X1OX L),

Thus, the dihedral angle between T’y P and T'x P’ is equal to their orthogonal comple-
ments with respect to (—, —) x. These can be expressed explicitly in terms of bases:

(TxP)* =span(X, XA X, ..., X A1 X, XBX),
(Tx P')* = span(X, XA, X, ..., XA 1 X, XB'X).

The angle between these complementary spaces is then given by

(XB'X,XA;X)x (XB'X,XBX)x (XB'X,X)y

((X/LX,XA])QX (XA X, XBX)x (XA,XA,X)X)
det
(X, XA; X)x (X,XBX)x (X X)x ) o

arccos

(XBX,XA;X)x (XBX,XBX)x (XBX, X)y (XB'X,XA;X)x (XBX,XB'X)y (XBX, X)x
(X, XA, X)x (X, XBX)x (X, X)x (X, XA;X)x (X, XB'X)x (X, X)x

\J ((XAlX, XA X)x (XAX,XBX)x (XAJ(,X)X) ((XALX? XA X)x (XAX,XB'X)x (XAIX,X)X> ‘
det det )

To simplify this expression, note that

Additionally, since X € P N FP’, we have that

(X, XA X)x = tr(4;X) =0, (X, XBX)x =0, (X, XB'X)x =0,

and
(X, X)x =tr(I,) = n.
These simplify the formula into the form as presented in Lemma O
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Example 4.1. If P = B* and P' = B'* are hyperplanes, then the Riemannian dihedral angle
atany X € PN P’ is given as

tr(XBXB')

Zx (P, P") = arccos T BB

An essential corollary of Lemmaf4.2is the following asymptotic behavior of Riemann-
ian dihedral angles to the Satake boundary:

Proposition 4.5. Suppose that P and P’ are planes of the same dimension in X, and P N P’
is of codimension 1 in both P and P'. Assume further that 11 is a Satake plane of type n — k in
X,,, and is transverse to both P and P'. Then for each« € PN P' NMland Y € PN P, the
limit of Riemannian dihedral angle

lim Zotey (P, P') = Zn(oy(m(PN1II), 7(P' N1II)).

6—)+

Here,  is the diffeomorphism from 11 to X,,_, given in Definition
Proof. Without loss of generality, let Col(II) = span(ey, ..., e,_x), and let
P =span(Ay,..., A1, B)*, P =span(Ay,..., A1, B)",
Fori=1,...,1—1, denote the minors of the first (n — k) rows and columns of 4;, B and
B'by A, By, and By, respectively. Then,
m(PNI) =span(Ay,..., A 10, Bo)", 7(P'NTI) = span(A,g,..., 410, By)"

The transversality of II to P and P’ ensures that Ao, ..., Aoi—1, Bo and B are linearly
independent. By Lemma we have

(/\l 1 Aio A By, \iZ IA“)/\B()) )
)

L) (m(PNII), (P N1I)) = arccos :
\/H/\l LA ABo|| || Ao A B

where a = diag(ag, O), i.e., oy = m(«) is the minor consisting of the first (n—k) rows and
columns of . This suggests that o/24;a'/2 = diag(ay/* Ase0y/®,0), fori =1,...,1— 1.

Hence, as € — 0, the inner products for the Riemannian angle have the following limits:
1%%(/1“ A]’)(a_i_gy)fl = tr(aAiaAj)

Qo

= tr((a2 A;0"?) (V2 4;01%)) = tr((ay* Ai g ) (> Aj 0ay™))
= tr(adioand;jo) = (Aio, Ajo) ozt

By substituting these limits into the expression of Z,..y (P, P’), we obtain that

lim Zoyer (P, P') = Ly (r(P NI, 7(P' N1I)).
e—=U4
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Example 4.2. Given hyperplanes A+ and B+ in X3, A = diag(Ay,0) and B = diag(By,0),

where

0 —1 1 -1
v (50 e ()

Then, Ay = AL N ds(ey, e;) and Be = BL N ds(ey, e,) are identified with geodesics in H?,
meeting at the point

0‘0:<1}2 1{2)’

with a Riemannian angle of 2 /3. By Proposition 4.5, for any line in A* N B* that diverges to
a = diag(ag, 0) € 95X, the Riemannian dihedral angle between A* and B+ based at a point
on this line will converge to 27 /3, when the base point diverges to a.

5. PrROOF OF THE MAIN THEOREM

Let D = DS(X,I') C X; be an exact, finitely-sided Dirichlet-Selberg domain of finite
volume satisfying the tiling condition. Recally that D has up to finitely many Satake
boundary components of type two, and these components meet only at certain Satake
vertices of type one. We prove Theorem|[I.2](the main result of this paper) in two steps:

(1)

In Subsection 5.1} we construct a subset
DW ¢ D,

namely a disjoint union of small neighborhoods around each Satake vertex of
type one, such that DY) meets only the faces incident to those vertices. We then
show there exists r; > 0 so that for every X € D the ry-ball centered at its
image X € M := D/~ is complete. Remove these neighborhoods from M, we
obtain a manifold (or orbifold) with boundary, denoted by M'. Let D’ C D be
the preimage of M'. By construction, the Satake boundary components of type

two in D’ are now pairwise disjoint.
In Subsection 5.2 we similarly define

D@ c D

as a disjoint union of neighborhoods around each remaining boundary compo-
nent of type two, meeting only their incident faces. We then prove there exists
ry > 0 so that for all X € D® < D/, the ry-ball around its image in M’ is
complete. Since the complement D \ (D U D)) is bounded, it follows that
M = D/~ is complete.

Throughout the proof we assume, without loss of generality, that the domain D is cen-
tered at X = I, the identity matrix.
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5.1. PartI: Behavior Near Satake Vertices of Type One. We begin by analyzing the cy-
cle structure of Satake vertices of type 1. Since Busemann-Selberg functions depend on
chosen reference points, we select them so as to satisfy a natural vertex-cycle condition:

Lemma 5.1. Let o« € 05D be a Satake vertex of type 1, and let ® be a Satake face of type 2
containing .. Denot by n and ' the two edges of ® meet at o, and w be any word in the cycle
of edges sending n to 1. Then w also fixes . Writing the boundary component 11 = span(®),
there exists a constant C' > 1, depending only on D and o, such that for all Y € X5,

C_lbg;)a,x(y) < b(nl;)a,x(wy) < Cb&)a’X(Y).

Proof. First, let wy be any cycle of the edge 7. By Proposition 4.3} the restriction of wj to
span(®) has finite order, hence is not loxodromic. It follows that wj fixes every point of

® and preserves the Busemann-Selberg function bg;)% x-

Next, suppose w and w’ are two words in the edge cycle sending 7 to 7. Both preserve
the boundary component II, so both scale bg;)m + by the same factor Cy > 0. Reversing
the cycle rescales by C'. That is,

bl (w.Y) = Cobi) (V),  bip) (w™hY) = Cylb, (V).

Since there are only finitely many such vertices «; in the orbit of o and faces ®; through
each «;, we may set
C= m%x{Ccpi, Co'},

g, P4

which yields the desired uniform bound. O

By Proposition4.3]and Lemmal5.1} we may now choose reference-point-free Busemann-
Selberg functions b,,, and [’1(111-);% for each «; € [a], so that:

o If o; = w.a; for some w in the vertex cycle, then
bo,(Y) = by, (w.Y), forany Y € Aj.

o If 1;, n; are edges in the same edge orbit 1], with ; = w.n;, and corresponding
boundary components II;, II;, then
OB, (V) < b, (w.Y) < OB (V).
We denote the associated horoballs (independent of reference points) by B(«;, ) and
BI(T1 )(ou, 7). Since D has only finitely many faces, we define a neighborhood of « inside

%

D by
1 1
B (a,r) = () B e (1),
(=Y

where the intersection runs over all type-2 Satake faces ¢ > a.
As the parameter r approaches to zero, the lemma below implies that the neighbor-

hood Bg) (cr, r) shrinks to the Satake vertex a:
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Lemma 5.2. For any r > 0, the closure Bg) (o, 7) N D contains a neighborhood of o within D.
Moreover, the intersection

(Bg)(@, 1/m) mﬁ) — {a}.

DY

1

Proof. For the first assertion, we need to show that BI(T1 )(a, r) contains a neighborhood
of ain D, where IT = span(®) and @ is any type 2 Satake face containing «.

To establish this, let S be a sphere in RP® centered at « that intersects every face or
Satake face of D containing «. Then, the convex hull of aL (S N D) contains a neighbor-

hood of a in D. We aim to show that this neighborhood is contained in Bﬁl )(a,7) when
the radius of S is sufficiently small. This is justified by showing that the line segment

from a to a + €X is entirely contained within BI(I1 )(a, r), where X is a point in SN D,
and € > 0 depends on X. Such points X can be categorized into three cases:

(i) X € D,

(ii) X € ®, or
(iii) X lies on a type 2 Satake face distinct from ®.

Case (i): When X € D, this containment is straightforward.

Case (ii): When X € ®, Lemma [3.4 implies that for any smooth curve a + eX + tY
approaching o + €X in D, where Y € X3, the Busemann-Selberg function b&)a(a +
eX + tY') converges to b () (m(a + €X)), a value less than r for sufficiently small € > 0.
Proposmon then 1mp11es that o + € X is on the type-one horosphere E ( r). Thus,
the segment from a to o + €X remains within Bl(I ) (a, 7).

Case (iii): When X is in a type 2 Satake face distinct from ®, Lemma 3.3|ensures that
the entire line segment from X to « lies within Bg) (a, ).

Since S N D is compact and b%l;)a extends continuously to Satake facets in dsD that
contain a, we can select ¢ uniformly over all X € S N D. Thus, a neighborhood of « is
indeed contained in BI(T1 ) (a,T).

For the second assertion, notice that for any ¢ > a and II = span(®), the intersection

ﬁ <B§>(a, 1/m) mE)

m=1

excludes all points in D; by Lemma it also excludes all points in the Satake face ®,
except for « itself. Taking the intersection over all type 2 Satake faces ® containing «
yields:

DX

(B (@, 1/m) mD) ﬂ O (B(l) a, 1/m)mD) = {a}.

1

m
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Lemma ﬂ ensures the existence of a constant » > 0 such that the sets B,(jl) (ar,7) for
all type 1 Satake vertices o € Fg(D) form a disjoint union

| |85 (a,7)

consisting of neighborhoods of those type 1 Satake vertices in D. The second assertion
of the lemma further implies that r can be selected such that each of these component
is separated from any face not incident with the corresponding Satake vertex.

We still need a lemma concerning certain relationships between type-one horoballs
and classic horoballs based at the same Satake vertex:

Lemma 5.3. There exists certain constants v’ > 0 and € > € > 0, such that:

(1) For each type-2 Satake face ® > o with II = span(®), and for any face G € F(D)
either disjoint from I1 or precisely incident with («, I1), the set

B(a, r’)\Bl(Tl)(a, C~te2r)

lies at distance at least € from G.
(2) If n and 7' are the two edges of ® meeting at o, and F, F' € F (D) are faces precisely
incident with n and 1’ respectively, then their intersections with

B(a,”"\B{(a, C"'e™r),

are separated by distance at least € .
(3) For any two distinct type-2 Satake faces ®, P’ > «,

DN B(a,7)C DN ( (a Cle r)U Bg,)(a, C’le’2€T)> :

Proof. (1). Consider the nested intersections

DN (ﬁ B(a, 1/m)\B§)(o¢, C"lr)) .

m=1

Similar to the proof of Lemma this is the complement of a horoball in ¢ based at
a, so it is disjoint from any face G € F(D) either disjoint from II or incident only at
(v, II). By the 1-Lipschitz property for Busemann-Selberg functions (Proposition [3.2)),
for sufficiently small 7" > 0 we obtain a uniform buffer of 3¢ between

Bla, ")\ Byt (e, C7'r)
for all such faces G € F(D). This yields our first assertion.
(2). Similarly, for each of the two edges 7,7’ through «, the infinite intersections

Fn (ﬂ B(a, 1/m)\B (a, 01626r)>

m=1

and

(ﬂ B(a,1/m) \B(l)(oz C- 16_267‘))
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are the complements of a horoball in the Satake edges n and 7. Hence, by shrinking 7’ if
necessary, one finds €' so that the corresponding truncated regions are at least ¢ apart,
proving, proving our second assertion.

(3). Finally, the infinite intersection

DN (ﬁ B(a, 1/m)>

m=1
is the union of all Satake faces containing «. Since every such face is contained in at
least one of the two horoballs BY (o, C~'e~2r) or BY (a, C~e~2¢r), it follows that for

sufficiently ' > 0, DN B(«, r’) is contained in the union of these two type-one horoballs.
U

With constants C, r, v/, and ¢ depending only on the Dirichlet-Selberg domain D
defined from Lemmas[5.1]to[5.3] we are ready to define the set claimed at the beginning:

DW = U <Bg)(a, e *C'r)N B(a, 6_67“/)) .
As the first half of the proof of the main theorem, we will establish the uniform com-
pactness for balls centered in DY/ ~.

Proof of Theorem 1.2, first half. We aim to prove that for every X € D)/ ~, represented
by the point

X e U (Bg)(oz, e *C7'r)yN B(a, e‘%')) :

the ball N(X,¢/2) is compact. Specifically, we will show that for each such X, the
preimage of N (X, ¢ /2) is contained in the compact region

U (Bg>(a, r) N B(a, )\ Bla, e—e’ba(X))) .

«
Assume, by way of contradiction, that there exists a (piecewise smooth) curve 7 in

D/ ~ of length < ¢/2, connecting X and another point ¥, where Y is represented by
Y € X, and

Y ¢ |_| (Bg)(&,r) N B(a,r’)) ,

the disjointness is shown in Lemma Up to a sufficiently small perturbation, we
further assume that the preimage of the curve v does not meet any faces of codimen-
sion 2 or more, possibly except for the endpoints X and Y. Therefore, the preimage
is contained in a disjoint union of certain neighborhoods of Satake vertices a;,..., ay,
consisting of a collection of segments glued together by the quotient map. For any point

X, € D/ ~ where two pieces of the preimage are glued together, its preimage consists
of two points X; ~ X/, paired by a certain facet-pairing transformation g;, in neighbor-
hoods of certain Satake vertices «y, and «y, , of type 1, respectively. We call X; and X
a pair of glued points in ~.
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Consider the first intersection point of v with the set
0 U < (o,7) N B(a,r ))

which we denote by Z, represented by Z € D. The preimage of the curve connecting X
and Z consists of segments (X, X1), (X1, X5),..., (Xim-1,X,,), where X; ~ X] are pairs
of glued points, and X = X,, Z = X/, for convenience. We analyze two cases for this
intersection point:
e The point Z lies on 0B(c/, 1) for a certain Satake vertex o/ of type 1.
e The point Z lies on 9B\ (,r) for a certain Satake vertex o’ of type 1 and a
boundary component II" = span(®’), where @' is a Satake face of type 2 contain-
ing o/.
Assume that the first case occurs. Lemma [5.2] implies that the preimage of the curve
restricted to B!! )(a r) N B(a, ') does not intersect any face not meeting a. Therefore,
for each pair of glued points X; ~ X! in the curve connecting X and Z, Proposmon.
implies the equality

1

bo,, (Xi) = b, (X]).
Combining this with the Lipschitz condition for Busemann-Selberg functions (Propo-
sition 3.2)), we deduce that

b (Z) < e“ba(X) <7,
given that the segments in the preimage of the curve connecting X and Z have a total
length less than ¢’. However, this contradicts the assumption Z € 9B(a/, 7).

Now assume that the second case occurs. Let (I', ') = (Il _,, o, _,), and induc-
tively define that (Il;, ,, ax, ,) to be the pair of boundary component with Satake vertex
taken to (IIj,, au,) by g;. Then ay, = «, and 11, is one of the boundary components con-
taining «. Denote it by II, the assumption implies

b (X) < e 207 Y, bl (X)) =7
Let ®;, be the Satake face contained in IIj,. Since X; and X] lie in the interior of facets of
D, g;.®, , and @, share at least a side. According to the choice of type-one Busemann-
Selberg functions, their values bg}z o, (Xj)and bg: o, (Xi) differs by a constant mul-
—1°%ki—1 A

tiplier < C'. Combining this fact with the 1-Lipschitz condition for type-one Busemann-
Selberg functions (Proposition 3.2)), there is a certain X such that

e *Cr < bgz o (XG) Semfr

A
The third assertion in Lemma [5.3|implies that for each «, the union
| | Bla,”\BY (o, ™)

>«
is disjoint. The first assertion in Lemma5.3|implies that the preimage of the curve from
X; to Z restricted to the component for II of the union above does not meet faces not
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incident with the two edges 1 and 7’ in II. Moreover, the second assertion in Lemma
implies that balls centered at points in the cycle of X; with radius €¢'/2 are disjoint and
do not intersect facets that precisely incident with a different Satake line. Therefore,
along the preimage of the curve from X; to Z, the corresponding facet-pairing trans-
formations compose into a word w, which maps II;, , to Il;,,, ensuring that w.®y,
and @, share at least a side. Consequently, the values bl(ql,)ﬁa,(Z ) is strictly less than r,

contradicting the assumption that Z lies on 8B§,) (/7).
This completes the proof of the first half of Theorem O

Remark 5.1. We can refine the construction by considering smaller neighborhoods of these
Satake vertices, still denoted by DU, such that any points X, X' € 0D paired by a side pairing
transformation are either both included in or excluded from D).

5.2. Part II: Behavior Near Satake Faces of Type Two. We have derived a polytope
D' = D\DW with unpaired boundary components that does not contain Satake ver-
tices of type 1, and contains only disjoint Satake faces of type 2. In this subsection, we
proceed to analyze the cycles of these type 2 Satake faces.

The first lemma in this subsection is parallel to Lemma 5.2|and proved similarly:

Lemma 5.4. Let ®; be a Satake face of D, and a, be an interior point of span(®;). Then, for
any r > 0, the closure B(as,,r) N D’ contains a neighborhood of ®; in D'. Furthermore,

ﬂ (B(a@, 1/m) mﬁ) =d,ND.
m=1
If the Satake face ®; is 2-dimensional, the proof requires us to decompose the set
B(as,,r) N D’ into three mutually exclusive parts:

e Points contained in the /-neighborhood of a face precisely incident with a vertex
of ®; atI1;,
e Points not of the previous type, while contained in the e-neighborhood of a face
precisely incident with an edge of ®; at II;, and
e All other points in B(ag,,r) N D’
As shown in the following lemmas, we can choose certain constants ¢, > 0 such that
the second part is a disjoint union corresponding to the edges of ®,.

Lemma 5.5. Let P, and P, be hyperplanes in X5 passing through I, and let the Riemannian
dihedral angle satisfy
0<bt < l[(Pl,PQ) <, <.
Then for each § > 0, there exists ¢ > 0 depending on 6, 01 and 0, such that
N(I,1)NN(P;,e) N N(Py,€) C N(I,1) N N(P, N Py, 5).
Here, N (P, r) denotes the r-neighborhood of P in X;.
Proof. Consider the space of all pairs of hyperplanes in X3 passing through I with topol-

ogy induced by their normal vectors. There exists a value e satisfying the inclusion
condition, depending on the hyperplane pair (P, ).
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This defines a function on the space of hyperplane pairs, which is continuous and is
strictly positive whenever the dihedral angle /;(P;, ) is bounded away from 0 and 7.
Since the space of hyperplane pairs is compact, there exists a constant ¢ > 0 such that
the inclusion condition holds for all such pairs (P, P»). O

Lemma 5.6. Let n and n' be adjacent edges of the Satake face ®, such that n N\ n' = o. Let F
and F' be faces of D precisely incident with n and 1/, respectively. Then there is a certain r > 0,
such that for every sufficiently small § > 0, there is a certain € > 0, satisfying

(B(ag,r) N (F\N(G,6))) N (Blaw, ) N (FAN(G,0))) = 2,

and are separated from each other by distance at least e. Here, G = F'N F" if it is non-empty. If
FNF' =g, Gisan arbitrary face that is precisely incident with .

Proof. Case (1). If FNF' = @, wehave FNF'NB(ag,r) = a. For any G precisely incident
with a, Lemma (3.1|implies that the completion N(G,0) contains a neighborhood of «
in D. Therefore,

F\N(G,¢) and F'\N(G,0)
does not meet in B(ag, ), making them of a positive distance away from each other.
Case (2). Suppose F' N F’ is a face of D precisely incident with « at II = span(®).

Without loss of generality, consider the case when F’ and F" are facets. According to
Proposition 4.5] the angle /x(F, F") satisfies

Lx(F,F') = Zo(n,n') =0 € (0,7),

as the base point X € F'N F' is asymptotic to a. By Lemma there exists > 0 such

that 0 5
s < xRy < T

forall X € ' F'N B(ag,T).
Now fix X € FNF'NB(ag,r). There exists g € SL(3,R) such that g.X = I. Moreover,

Q 9—|—7T:|

27 2
where span(g.F') and span(g.F") are hyperplanes in X3 passing through /. By Lemma
there exists ¢ > 0 such that

N(I,1)NN(g.F,e)NN(g9.F';e) C N(I,1)NN(g.Fng.F' ).
Pulling back by ¢g~*:

N(X, )N N(F,e)nNN(F',e) C N(X,1)NN(FNF')$).

Since the number ¢ > 0 is independent of X, we apply this for all points X in X €
F N F'NB(ag,r) and deduce

Blag, ) N N(FNF 1)NN(F,e) N N(F',e) C N(FNF', ).
We claim that forany Y € N(F,¢)and Y’ € N(F”,¢) outside of N(F'NF", 1), the distance

d(Y,Y’) > 2¢ as well. Assume this is not true, then for X € F'N I’ and lines s and s
[0,1] — &5 from X toY and Y, the distance from s(¢) to s’ strictly increases as t increases

AI(QF,QF/) :ZX(FaF/) S |:
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from 0 to 1. However, when s(t) lies in N(F N F',1)\N(F N F’,§ + ¢), its distance to ¢’
is at least 2¢, contradicting the assumption d(Y,Y”) < 2e.
Thus, we may eliminate N(F' N F”, 1) from the inclusion above, yielding that

B(ag,r) N (F\N(FNF'0))and B(ag,r) N (F'\N(FNF'J))
are separated by distance at least e. O

For each two-dimensional Satake face ® and one-dimensional Satake edge 7 in D',
Proposition 4.3 provides fixed points ag and o, under the corresponding Satake cycles.
Moreover, we may choose these points and their Busemann-Selberg functions so that,
whenever ¢; = w.®; for some word w in the cycle [®], one has

ag; = w.ag, and by, (V) = bo (w.Y), VY eAs,

and similarly for Satake edge and vertex cycles in D’. We will show that there is » > 0
so that

D@ = U B(agy,T)
I

is a disjoint union (indexed by the maximal Satake faces ®1; lying in each boundary
component IT) and that balls in D®)/ ~ of a uniform radius are compact.

Proof of Theorem (1.2} second half. Step (1). By the discussion following Lemma [5.2] and
since there are finitely many Satake vertices in D', we can choose § > 0 and ' > 0 such

that
D0 =| | <B(a,r’) N|JN(F, 5))
« Fy
is a disjoint union (over the Satake vertices «), and remains so if § is replaced by 2. Here
F, ranges over faces precisely incident with o, and each component B(«, r')NJ N (F, 6)
meets no faces not incident with its a. By Proposition b, is invariant under the
Satake cycle of o, and one shows exactly as in the classical hyperbolic case that balls of
radius ¢ in in D/ ~ are compact.
Step (2). If o, &' lie in the interior of the same boundary component II, then

C™'bor < bo < Chy,
for some C' > 1. Using Lemma 5.6] we choose € and 7" > 0 so that

DO =| || Blay, ") n|N(F,, O\D®* | |
Iy

n

is a disjoint union (over Satake edges 1), remains so if ¢ is replaced by 2¢, and each
component does not meet faces not incident with its . Again, its image in the quotient
has compact e-balls.
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Step (3). By the same comparability argument, there is " > 0 so that

D2 =| | (B(aq), ") 0| N(Fe, )\ (DP0U D(Q)’l)> ,

) Fg

is a disjoint union and each component meets only faces incident with its ®. For some
¢ > 0, balls of radius ¢ in D®?/ ~ are compact.
Finally, the compacrability argument allows us to choose r > 0 small enough ensur-

ing
D® = J B(ag,,r) c DP*u D uD®?,
II

so D@ is a disjoint union with uniformly compact balls in the quotient, completing the
proof. O

Combining the constructions of Subsections [5.1|and [5.2] yields the full proof of The-
orem[1.2]

6. ExaMPLES OF A DIRICHLET-SELBERG DOMAIN

In this section we exhibit explicit finite-volume, complete X3-orbifolds by gluing to-
gether certain Dirichlet-Selberg domains along facets.

Example 6.1. Let D C A5 be the projective 5-simplex whose six vertices lie on the Satake
boundary and are given by the rank-one matrices

1 £1 0 1 0 %1 0 0 O
Q12 = +1 1 0 y O34 = 0 0 0 , 056 = 0 1 +1
0 0 0 +1 0 1 0 £1 1

Equivalently, under the identification of type-one component of dsXs with RP?, these corre-
spondto o =[1:41:0], 34 =1[1:0:=£1], a5 = [0:1: £1]. Label the unique facet of D
missing o; by F;, fori =1,...,6.

Define three elements of SL(3,R),

1 1 0 1 7 1 -1 L _1

Y Y B S T _ o
a= p 2 1 , b= 5 1 P , C= 0 2 ,

5 —3 1 5 0 3 13 =

and set Tg = {a,b,c,a™',b, c™1}. One checks that
CL.F(; = Fla bFQ = Fg, C.F4 = F5,

and that each facet F; lies in the bisector Bis(!, g;.1) for the corresponding generator g; € T'.
Hence D is the Dirichlet-Selberg domain

D = DS(I,Ty) C Xs.
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The 15 ridges r;; = F; N F; (for 1 <1 < j < 6) break into five cycles under the action of I'y:

a b c
Ts6 — T'12 = T'34 — T's6,

a”t b1 c!

14 > T'36 T'25 714,

a a b1

T26 —7 T16 —> T13 — T26,
b b ¢!

To4 —7 T23 —> T35 — T24,
c c a1

Tag — T45 — T15 — T46-

By direct computation of the invariant angle function™"** one finds, for the first cycle, 0;y,,(112) =
Oinw (134) = Oino(156) = %”, whence the total angle sum is 2m. For each of the remaining four cy-
cles the sum of the (Riemannian) dihedral angles is . Thus D satisfies the angle-sum condition
for Dirichlet-Selberg domains.

Consequently, gluing the facets of D via the identifications in Iy produces a complete, finite-
volume Xs-orbifold M = D/ ~.

By Theorem [1.2} the orbifold M of Example[6.1]is complete. Hence, Poincaré’s Fun-
damental Polyhedron Theorem yields the following presentation of its fundamental

group.
Corollary 6.1. Let

DO |

N[0 | =
|
—_

1
5 0
2
and let I' = (a,b). Then I is a lattice in SL(3, R) with presentation

I = (a,b|(aba"'b™1)?, (ababa)?, (a*b~1)?, (ab®)?).

DD [ | D [ =
B [ | D |

Since non-uniform lattices in SL(3,R) are quasi-isometric to SL(3, R) itself®%13, the
group I' above is not Gromov-hyperbolic.

Next we describe the thin part of A/ = X3/T", known to be a union of cuspidal ends
or corners™. Each vertex «; of D determines a one-dimensional subspace of R3, and
these subspaces span 18 full flags, corresponding to 1-simplices or Weyl chambers in
the visual boundary 0.,/X3. These flags break into three equivalent I'y-orbits, and we
may focus on the one containing the flag

V., = span(e; + e3) C span(e; + ey, e; +e3) C R

The associated minimal parabolic subgroup P = Py, can be read off from the face-
pairing data. Computation suggests that its unipotent radical F, is torsion-free, satis-
fying P/ Py = (Z/27)*. We further find generators

1 1 -1 0 0 —1 00
u=[0 0 1 |,o=(-11-1}),w=|11 1|,
0 -1 2 1 0 2 10
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and a presentation
Py = (u,v,w | [u, w], [v,w], [u, v]w™?),

so Py = 11 (T? %, S'), the fundamental group of the mapping torus of ¢ = (} ?). Hence,
each minimal-parabolic cuspidal end of M is homeomorphic to

R2 x ((T? x, S")/Ky).

Remark 6.1. By Selberg’s Lemma, M admits finite-degree manifold covers. One such example
arises from the surjective reduction modulo 3:

p: T — SL(3,Z[%]) = SL(3,Z/3Z).
Let H be a subgroup of SL(3, Z/37Z) with order 39, for instance,

0 20 1 21
hlz 01 2 , hQZ 011 R H:<h1,h2>2013>Q03.
1 01 0 01

Then, the preimage T'y = p~'(H) is torsion-free, and [[' : T'y] = [SL(3,Z/3Z) : H| = 144. It
remains an interesting question whether M admits a smaller-degree manifold cover.

Example 6.2. As another example, consider the congruence subgroup
r=r52) ={g= (gij)?,jzl € SL(3,Z) | gii =1 (mod 4), g;; =0 (mod 2), Vi # j}.

This group is generated by the matrices a;; = I +2e;®e; for 1 < i # j < 3; seelMenobloot A

plying the algorithm developed in®*23Pu2% together with Theorem (1.2, we find that the Dirich-
let—Selberg domain D = DS(1,T") is a convex polytope with 13 type-one Satake vertices:
[1:0:0,[0:1:0,,[0:0:1],[1:£1:0],[1:0:=x1],[0:1,£1], and [1: £1: £1].
The domain D has 24 facets, each lying in a bisector of the form Bis(I, a;;.1) or Bis(I, aj;ap;.1).
These facets intersect in 84 ridges, which organize into 25 ridge cycles. Tracing the group ele-
ments along these ridge cycles produces the following relators for I';(2):
e 21 cycles of angle sum 27:
— 12 cycles involve facet—pairings of the form aﬁai, yielding the commuting rela-
tions [aji, aki] =e.
— 3 cycles yielding the commuting relations [a;;, a;;] = e.
— 6 cycles giving the Heisenberg-type relations [a;j, a;x] = a2
e 4 cycles of angle sum , all of which produce relations equivalent to that

-1 -1 —1\2
(a12a13 azsaz; asiagy )™ = e.
Hence one obtains the presentation

[%5(2) = (ai; | [aij, ail, [aji, ar), [aij, ajrlay’, (a12075 assas; asiagy )?).
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7. FuTure DIRECTIONS

Most of our constructions and results have been developed in the setting of the sym-
metric space X,,, but our proof of Theorem [1.2l was carried out in detail only for A;.
We expect that the same arguments extend to arbitrary &,, with help of the combina-
toric structure of finite-volume Dirichlet-Selberg domains and properties of Busemann-
Selberg functions.

A second, more ambitious direction is to remove the finite-volume condition. Infinite-
volume Dirichlet-Selberg domains arise from a much larger class of discrete subgroups
of SL(n,R), notably including various hyperbolic subgroups (e.g. surface group and
knot group representations into SL(n, R)**HEE Two new obstacles appear:

e Infinite-volume polytopes admit infinitely many nonempty Satake boundary
components (cf. Corollary 3.1)). By Proposition a given horoball based
at a type-one component meets infinitely many higher-type components, so
one cannot trim away all “higher-type intersections” using only finitely many
higher-type horoballs.

e As one approaches the Satake boundary inside an infinite-volume polyhedron,
some Riemannian dihedral angles may tend to 0 or 7 (cf. Lemma[4.2)). There-
fore we lose the face-separation argument of Lemma and would need new
methods to prove the uniform compactness of balls, especially by exploiting the
angle-sum condition.

Overcoming these issues - perhaps with additional techniques - could lead to a com-
plete extension of our main theorem to the infinite-volume scenario.

APPENDIX A. AN INEQUALITY FOR INTERLACED SEQUENCE DEVIATIONS

Lemma A.1. Let n and k be positive integers with k < n. Suppose
ap >ay>-->a, and by >by> - > b,y
are real numbers satisfying the interlacing condition,
a; >b; > a1 =1,....n—k.
Define the averages a = + >~ a; and b = -1 5" b;. Then,
n n—k
D (a;—a)y =) (b — D)
i=1 i=1
Proof. We proceed by induction on k. The base case k = 1 asserts that
a; >by>ay > > by > ay,.
Fix such an interlacing (a;) and (b;). Since the squared deviation (b, ..., b, 1) — S0 (b;—
b)? is convex, its restriction to [as, a1] X - -+ X [a,_1, a,] attains the maximum at a certain
corner. Furthermore, the maximum is attained when the numbers b; are pairwise dis-

tinct. Hence up to reordering, {b1,...,b,—1} must equal {a;,...,a,} \ {a;} for some
I<j<n
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A direct calculation then shows

i(ai—af—z(ai_%)zzzjm —aP >0,

i=1 i#j

which establishes the case k = 1.
For general k, one has a refined sequence {b1,...,b,_, .} satisfying b;_; > b} > b; and
a; > b, > a;+x—1. Applying the induction assumption to {a; } and {b} yields the desired
inequality. O

AprpPeENDIX B. AN ANALYTIC CRITERION FOR FINITE VOLUME
Definition 3.5|is indeed equivalent to the actual finite-volume condition:

Proposition B.1. Let D C P(Sym, (R)) be a finitely-sided projective convex polytope, and
D C X, 1o e its restriction to X,,. Then D has finite Riemannian volume in X, if and only if
DcAa,.

Proof. We describe the Riemannian volume form on &, by the standard projective vol-
ume form (see e.g.F>e):

o lE /\1<] dxl]
du(xz‘j) - (det( ) n+1)/27 ;xlja

Necessity. If D ¢ X, then there is a boundary point X, € d¢D with det X, = 0 and a
small projective-neighborhood U > X,, U C D. On U N ds&,, the denominator det X
vanishes to first order, so |, vr A = oo. Hence D cannot have finite volume.

Sufficiency. Conversely, assume D C X,. We show each boundary neighborhood
contributes a finite amount to the volume integral; compact interior patches are mani-
festly finite.

Fix a boundary stratum of type n — k. After conjugating, we may take

Xo = diag(l, 0), k <n.
Introduce homogeneous coordinates near Xj:

A B

X = X() + (BT C> s Ae Symk(R), tI‘(A) = 0, B e Mk,nfk(R)y Ce Symn_k(R)

Positivity of X forces C' to lie in a convex polytope of the projective cone. Writing C' =
tY witht > 0Oand Y € X,_4, thenY € Dy C A,_;. For fixed Y € D,, positive-
definiteness along with the polyhedral property together show that entries in B are
O(t), therefore det(X) = t"*det(Y) + O(¢t"**1). By the compactness of D, one has

1
det(X) > 575”"“ det(Y),

in a sufficiently small neighborhood.
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The volume form factorizes (up to a bounded Jacobian) as
v\ day ~ (L/\dA) </\dB> (/\dc) .
For fixed C, the positive-definiteness show that
/ J\ dB < 280 F) (det(C))/? = 28R (det (V) 2R,
For fixed t, B = O(t), [ A dB = O(t*®"=%)), thus one estimates
/ /\ dB < K(det(Y))¥/*#" "9 K < oc.
Meanwhile, C' = tY contributes

/\dC:t<”—k—1><n—k+2>/2dm<LE A dyij> E= Zy” o

j>i>k+1 1<j

Hence the singularity near X is integrable:

/ p / LE/\d% </ 2("+1)/2LE/\d$ij
T det(X) 02 = [T det (1Y) (D2

. n+1)/2t(n k—1)(n—k+2)/ LE/\ dyz
_ L dA/ dB/ dt/ i<j “Jij
/ﬂcz‘j<6 /\ /\ Dg det(tY) eyt
2(nt1)/2(n—k=Dn=k4D)/2y p Ay

det(1Y ) (n+1)/2

(26)(k 1)(k+2)/ / dt K(det(y))k/th(n k)
D

0
k(n—k)/2—1
_K/ (k—1)(k+2)/ / dt/ t )/ lE /\z<3 dyz]
Do det

(n—k+1)/2
K'e k(n+1)—
= —V 1(Dy) <
i =g olDo) < oo
using the induction assumption for &,,_;. Covering D by finitely many such boundary
charts plus an interior compact set shows | pdp < oo, O
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