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Abstract. We establish a general completeness criterion for Dirichlet-Selberg domains
in the symmetric spaceSL(n,R)/SO(n). By introducing and analyzingBusemann-Selberg
functions - which extend classical Busemann functions and capture asymptotic behavior
toward the Satake boundary - we show that every gluingmanifold or orbifold produced
byDirichlet-Selberg domain is complete. This result parallels thewell-knownhyperbolic
case and ensures that the key completeness condition in Poincaré’s Algorithm always
holds in specific cases.
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1. Introduction

This paper is motivated by a semi-decidable algorithm based on Poincaré’s Funda-
mental Polyhedron Theorem. The original version of Poincaré’s Algorithm addresses
the geometric finiteness of a given subgroup of SO+(n, 1). It was originally proposed by
RileyRil83 for the case n = 3 and was later generalized to higher dimensions by Epstein
and PetronioEP94.

1.1. Poincaré’s Algorithm. The algorithm proceeds by employing a generalization of
the Dirichlet domain in hyperbolic n-space, as introduced inKap23:

Definition 1.1. For a point x in hyperbolic n-spaceHn and a discrete subset Γ0 of the Lie group
SO+(n, 1), the Dirichlet Domain for Γ0 centered at x is defined as

D(x,Γ0) = {y ∈ Hn|d(g.x, y) ≥ d(x, y), ∀g ∈ Γ0},
where g.x ∈ Hn denotes the action of g ∈ SO+(n, 1) to x ∈ Hn as an orientation-preserving
isometry.

This definition extends the concept of Dirichlet Domains from discrete subgroups
to discrete subsets. Using this construction, Poincaré’s algorithm can be outlined as
follows:

Poincaré’s Algorithm for SO+(n, 1).
(1) Assume that a subgroup Γ < SO+(n, 1) is given by generators g1, . . . , gm, with

relators initially unknown. We begin by selecting a point x ∈ Hn, setting l = 1,
and computing the finite subset Γl ⊂ Γ, which consists of elements represented
by words of length ≤ l in the letters gi and g−1

i .
(2) Compute the face poset of the Dirichlet domainD(x,Γl), which forms a finitely-

sided polytope inHn.
(3) Utilizing this face poset data, check ifD(x,Γl) satisfies the following conditions:

(a) Verify that D(x,Γl) is an exact convex polytope. For each w ∈ Γl, con-
firm that the isometry w pairs the two facets contained in Bis(x,w.x) and
Bis(x,w−1.x), provided these facets exist.

(b) Verify that D(x,Γl) satisfies the tiling condition, meaning that the quo-
tient space M obtained by identifying the paired facets of D(x,Γl) is an
Hn-orbifold. This condition is formulated as a ridge-cycle condition, as
described inRat94.

(c) Verify that each generator gi can be expressed as a product of the facet
pairings of D(x,Γl), following the procedure inRil83.

(4) If any of these conditions are not met, increment l by 1 and repeat the initializa-
tion, computation and verification processes.

(5) If all conditions are satisfied, the quotient space of D(x,Γl) is completeKap23.
By Poincaré’s Fundamental Polyhedron Theorem,D(x,Γl) is a fundamental do-
main for Γ, and Γ is geometrically finite. Specifically, Γ is discrete and has a
finite presentation derived from the ridge cycles of D(x,Γl)

Rat94.
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The completeness condition is fundamental when applying Poincaré’s Fundamental
Polyhedron Theorem. If the quotient of the convex polytope D by its facet pairing is
incomplete, the facet-pairing transformations may generate additional relators. In the
context of hyperbolic 3-space, this phenomenon is closely related toHyperbolic Dehn
fillingsThu82.

Consider, for instance, the Meyerhoff manifoldMey87, which arises from complet-
ing an incomplete gluing of a certain ideal triangular bipyramid. This manifold cor-
responds to the (5, 1)-Dehn filling on the figure-eight knot complement. While the
ridge cycles of the Meyerhoff manifold provide relators for the facet pairings that agree
combinatorially with those of the figure-eight knot group, additional relators emerge
due to the Dehn filling condition,Pur20. Consequently, Poincaré’s Fundamental Poly-
hedron Theorem cannot fully recover the group presentation generated by Meyerhoff
facet-pairing transformations mentioned above.

Fortunately, for Dirichlet domains, the completeness condition is not a concern - as
noted in Step (5) of Poincaré’s Algorithm. The guaranteed satisfaction of the complete-
ness condition can be explained through the concept of Busemann Functions,Bus55:

Definition 1.2. Let a ∈ ∂Hn be an ideal point and x ∈ Hn be a reference point. For any
geodesic ray γ : R → Hn asymptotic to a, and for any y ∈ Hn, the limit

ba,x(y) := lim
t→∞

d(γ(t), y)− d(γ(t), x)

exists and is independent of the choice of γ. This limit defines the Busemann function ba,x :
Hn → R.

It is well-known that the Busemann function satisfies the following asymptotic be-
havior:

• If γ is a geodesic ray asymptotic to a, then limt→∞ ba,x(γ(t)) = 0.
• If γ is any geodesic ray asymptotic to a different ideal point, then limt→∞ ba,x(γ(t)) =
∞.

One considers the level sets of the Busemann functions, known as horospheres in Hn.
In the Poincaré disk model, horospheres are represented as (n − 1)-spheres tangent
to the visual boundary at the base points. For a finite-volume convex polytope, horo-
spheres based at its ideal vertices serve to separate the cusp parts from the remainder
of the polytope.

ForDirichletDomains, the Busemann function exhibits the following invariance prop-
erty:

Lemma 1.1 (Kap23). Let D = D(x,Γ0) be the Dirichlet Domain for a finite subset Γ0 ⊂
SO+(n, 1) with center x ∈ Hn, satisfying the following conditions:

• D is exact: For each g ∈ Γ0, we have g−1 ∈ Γ0, and the two facets of D contained in
Bis(x, g.x) and Bis(x, g−1.x) are isometric under the action of g.

• D is finite-volume, i.e., D ∩ ∂Hn is a discrete set of ideal points.
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Let a ∈ ∂Hn ∩ D be an ideal vertex, and suppose g1, . . . , gm ∈ Γ0. Define the sequence of
ideal points inductively as follows: a0 = a and ai = gi.ai−1 for i = 1, . . . ,m. If the following
conditions are satisfied:

• Bis(x, gi.x) contains a certain facet of D for i = 1, . . . ,m.
• The points ai, i = 0, . . . ,m are ideal vertices of D.
• The sequence satisfies am = a0.

Then the word w = gm . . . g1 preserves the Busemann function based at a, i.e.,

ba,x(y) = ba,x(w.y), ∀y ∈ Hn.

This invariance ensures that Cauchy sequences in the cusp region of the quotient
D/ ∼ remain bounded away from the visual boundary, thereby guaranteeing the com-
pleteness condition in Step (5) of Poincaré’s Algorithm:

Theorem 1.1 (Kap23). LetD = D(X,Γl) be a finitely-sided Dirichlet domain inHn satisfying
the tiling condition. Then the quotient space M = D/ ∼ is complete. In particular, D is a
fundamental domain for the subgroup generated by its facet pairings.

This property of the Dirichlet domain simplifies the implementation of Poincaré’s
Algorithm for SO+(n, 1).

1.2. TheSymmetric SpaceSL(n,R)/SO(n). Our research seeks to generalize Poincaré’s
Algorithm, extending it to other Lie groups, particularly SL(n,R). It is well-established
that SL(n,R) acts as the orientation-preserving isometry group on the symmetric space
SL(n,R)/SO(n),Ebe96. We recognize this space through the following models:

Definition 1.3. The hypersurface model of SL(n,R)/SO(n) is defined as the set

Xn = Xn,hyp = {X ∈ Symn(R) | det(X) = 1, X > 0}, (1.1)

equipped with the metric tensor

⟨A,B⟩X = tr(X−1AX−1B), ∀A,B ∈ TXXn.

Here, Symn(R) denotes the vector space ofn×n real symmetric matrices, andX > 0 (orX ≥ 0)
indicates that X is positive definite (or positive semi-definite, respectively). Throughout the
paper, we adopt the bilinear form ⟨A,B⟩ := tr(A ·B) on Symn(R) and interpret orthogonality
accordingly.

In this model, the action of SL(n,R) on Xn is given by

SL(n,R) ↷ Xn, g.X = gTXg.

An alternative model is also considered in the paper:

Definition 1.4. The projective model of Xn is defined as follows:

Xn = Xn,proj = {[X] ∈ P(Symn(R)) |X > 0}. (1.2)
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It is evident that the two models of the symmetric space Xn are diffeomorphic.
Classic Dirichlet domains in Xn are non-convex and often impractical for further

study. To overcome these challenges, our generalization of Poincaré’s Algorithm uti-
lizes an SL(n,R)-invariant proposed by SelbergSel62 as a substitute for the Riemannian
distance on Xn.

Definition 1.5. For X, Y ∈ Xn, the Selberg invariant from X to Y is defined as

s(X, Y ) = tr(X−1Y ).

For a point X ∈ Xn and a discrete subset Γ0 ⊂ SL(n,R), the Dirichlet-Selberg Domain
for Γ centered at X is defined as

DS(X,Γ0) = {Y ∈ Xn|s(g.X, Y ) ≥ s(X, Y ), ∀g ∈ Γ0}.

Dirichlet-Selberg domains serve as fundamental domains when Γ < SL(n,R) is a
discrete subgroup satisfying StabΓ(X) = 1,Kap23. Moreover, these domains are realized
as convex polyhedra in Xn, defined as follows:

Definition 1.6. A k-dimensional plane of Xn is the non-empty intersection of a (k + 1)-
dimensional linear subspace of Symn(R) with Xn,hyp. An (n − 1)(n + 2)/2 − 1-dimensional
plane is referred to as a hyperplane of Xn.

Half spaces and convex polyhedra in Xn are defined analogously to the corresponding
concepts in hyperbolic spacesRat94.

For a convex polytopeD inXn, its faces, facets, and ridges are also defined analogously. We
denote the collections of these objects by F(D), S(D), andR(D), respectively.

Hyperplanes inXn can be realized asperpendicular planes. For any indefinitematrix
A ∈ Symn(R), the set

A⊥ = {X ∈ Xn|tr(A.X) = 0},

is non-empty, and constitutes a hyperplane of Xn,Fin36;Du24. Specifically, the boundary
of a Dirichlet-Selberg domain DS(X,Γ) consists of bisectors:

Bis(X, g.X) = {Y ∈ Xn|s(X, Y ) = s(g.X, Y )},

for g ∈ Γ. In the form of perpendicular planes, these bisectors are expressed as

Bis(X, g.X) =
(
X−1 − (g.X)−1

)⊥
.

These facts provide suitable analogs to corresponding concepts in hyperbolic spaces for
our proposed generalization of Poincaré’s Algorithm to SL(n,R).

InKap23, a generalized version of Poincaré’sAlgorithmwasproposed, adoptingDirichlet-
Selberg domains in the Dirichlet construction process. Details of this algorithm are
reviewed in Section 2.
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1.3. The Main Result. The main purpose of this paper is to generalize Theorem 1.1 -
the completeness property for hyperbolic Dirichlet domains - to Dirichlet-Selberg do-
mains inXn. We focus onDirichlet-Selberg domains of finite volume, which correspond
to lattices in SL(n,R). These subgroups play an important role among the discrete
subgroups of SL(n,R). In particular, the quotients of finite volume Dirichlet-Selberg
domains exhibit favorable structures. By exploiting these properties and extending the
approach inRat94, we establish the following result:

Theorem 1.2. Let D = DS(X,Γ0) be an exact partial Dirichlet-Selberg domain centered at
X ∈ X3, defined with respect to a finite set Γ0 ⊂ SL(3,R), and satisfying the tiling condition.
If, in addition, D has finite volume, then the quotient of D under its intrinsic facet pairing is
complete.

The proof of Theorem 1.2 proceeds by constructing a family of generalized Buse-
mann functions on X3, which possess specific invariance properties under the action of
SL(3,R). Moreover, we isolate the cusp regions ofD via generalized horospheres, anal-
ogous to the hyperbolic setting. Furthermore, we formulate these Busemann function
constructions in the general setting of Xn.

1.4. Organization of the Paper. This paper is structured as follows. In Section 2, we
review the generalized Poincaré’s Algorithm for the group SL(n,R), and the compact-
ifications of Xn. In Section 3, we introduce the key construction - Busemann-Selberg
functions on Xn, define generalized horospheres via these functions, and study the
structure of finite-volume Dirichlet-Selberg domains. In Section 4, we establish various
properties of Busemann-Selberg functions, horospheres and hyperplanes, which are
required for the proof of the main theorem. Section 5 presents the proof of Theorem
1.2, synthesizing earlier results. Finally, we give concrete examples in Section 6, con-
structing exact finitely-sided Dirichlet-Selberg domains in Xn that illustrate our main
results.

2. Preliminaries for the Symmetric Space Xn

2.1. Poincaré’s Algorithm for SL(n,R). Let us recall the Poincaré’s Algorithm on Xn

described inKap23;Du24, analogically to the real hyperbolic case.
We start by considering the facet pairings for convex polytopes in Xn. These are

analogous to the hyperbolic case:

Definition 2.1. A convex polytope D in Xn is said to be exact if, for each of its facets F , there
exists an element gF ∈ SL(n,R) such that

F = D ∩ gF .D,

and such that F ′ := g−1
F .F is also a facet of D. The transformation gF is referred to as a facet

pairing transformation for the facet F .
For an exact convex polytope D, a facet pairing is a set

Γ0 = {gF ∈ SL(n,R)|F ∈ S(D)},
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where each facet F is assigned a facet pairing transformation gF , and the transformations satisfy
gF ′ = g−1

F for every paired facets F and F ′.

For a discrete subgroup Γ < SL(n,R), the Dirichlet-Selberg domain D = DS(X,Γ)
has a canonical facet pairing. Each element g ∈ Γ serves as the facet-pairing trans-
formation between the facets contained in the bisectors Bis(X, g−1.X) and Bis(X, g.X),
provided these facets exist.

A facet pairing naturally defines an equivalence relation on D:

Definition 2.2. Two pointsX,X ′ inD are said to be paired ifX ∈ F ,X ′ ∈ F ′, and g−1
F .X =

X ′ for a specific pair of facets F and F ′. This pairing defines a binary relation, denoted by
X ∼= X ′. The equivalence relation generated by this binary relation is denoted by ∼.
The cycle of a pointX in an exact convex polytopeD with a facet pairing Γ0 is the equivalence

class of X under the relation induced by Γ0.

With the preliminaries above, we introduce the tiling condition involved in Poincaré’s
Algorithm:

Definition 2.3. For an exact convex polytope (D,Γ0) in Xn, the equivalence relation ∼ defines
a quotient space M = D/ ∼. The polytope is said to satisfy the tiling condition if the corre-
sponding quotient space M , equipped with the path metric induced from Xn, has the structure
of a Xn-manifold or orbifold.

The tiling condition can be reformulated using a ridge cycle condition, analogous to
the hyperbolic case described inRat94. However, unlike hyperbolic polytopes, the dihe-
dral angles between two facets of aXn-polytope depend on the choice of the base point.
This dependency is further explored in Subsection 4.3. Nevertheless, the formulation
of the ridge cycle condition remains valid when the base point is specified:

Definition 2.4. Let X be a point in the interior of a ridge r of the polytope D. The cycle [X] is
said to satisfy the ridge cycle condition if the following criteria are met:

• The ridge cycle [X] is a finite set {X1, . . . , Xm}, and
• The dihedral angle sum satisfies

θ[X] =
m∑
i=1

θ(Xi) = 2π/k,

for certain k ∈ N. Here, θ(Xi) denotes the Riemannian dihedral angle between the two
facets containing Xi, measured at the point Xi.

InDu24, we reformulate the ridge cycle condition by introducing a generalized angle-
like function that does not depend on the choice of base points. This approach applies to
generic pairs of hyperplanes, simplifying the implementation of Poincaré’s Algorithm.

Using the framework explained above, we propose a generalized Poincaré’s Algo-
rithm for the Lie groupSL(n,R), parallel to the classical algorithm forSO+(n, 1):Kap23;Du24

Poincaré’s Algorithm for SL(n,R).
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(1) Assume that a subgroup Γ < SL(n,R) is given by generators g1, . . . , gm, with
relators initially unknown. We begin by selecting a point X ∈ Xn, setting l = 1,
and computing the finite subset Γl ⊂ Γ, which consists of elements represented
by words of length ≤ l in the letters gi and g−1

i .
(2) Compute the face poset of theDirichlet-Selberg domainDS(X,Γl), which forms

a finitely-sided polytope in Xn.
(3) Utilizing this face poset data, check if DS(X,Γl) satisfies the following condi-

tions:
(a) Verify that DS(X,Γl) is an exact convex polytope. For each w ∈ Γl, con-

firm that the isometry w pairs the two facets contained in Bis(X,w.X) and
Bis(X,w−1.X), provided these facets exist.

(b) Verify thatD(X,Γl) satisfies the tiling condition, which is introduced above.
(c) Verify that each element gi can be expressed as a product of the facet pair-

ings of DS(X,Γl), following the procedure inRil83.
(4) If any of these conditions are not met, increment l by 1 and repeat the initializa-

tion, computation, and verification processes.
(5) If all conditions are satisfied, we verify if the quotient space ofDS(X,Γl) is com-

plete. If so, by Poincaré’s Fundamental PolyhedronTheorem,DS(X,Γl) is a fun-
damental domain for Γ, and Γ is geometrically finite. Specifically, Γ is discrete
and has a finite presentation derived from the ridge cycles of DS(X,Γl).

We also implement the algorithm with Python, computing the face poset structure of a
given Dirichlet-Selberg domain, and checking the three conditions listed aboveDu25.

Several questions arise from this algorithm. As a semi-decidable procedure, it is clear
that for a given center X ∈ Xn and subgroup Γ < SL(n,R), the algorithm terminates
in finite time if and only if the Dirichlet-Selberg domain DS(X,Γ) is finitely-sided. It
remains unknown whether this condition holds for nonuniform latticesKap23. Davalo
and RiestenburgDR24 showed that uniform lattices in SO(n − 1, 1), when regarded as
subgroups of SL(n,R) via the canonical inclusion

SO(n− 1, 1) ↪→ SL(n,R),

do not admit finitely-sided Dirichlet-Selberg domains for any center. This result gives
a negative answer to Kapovich’s question on whether Anosov subgroups always admit
finitely-sided Dirichlet-Selberg domains.

Davalo andRiestenburg also considered the |logωi|-undistorted subgroups ofSL(2n,R),
proving that these subgroups admit finitely-sided Dirichlet-Selberg domains for ev-
ery choice of center. The |logωi|-undistorted property holds for the Schottky groups in
SL(2n,R) we constructed inDu24, but does not extend to subgroups of SL(2n− 1,R).
Another question concerns the completeness condition forDirichlet-Selberg domains

in Xn. This condition is required by Poincaré’s Fundamental Polyhedron Theorem and
holds for all hyperbolic Dirichlet domains with the tiling condition (see Theorem 1.1).
Kapovich conjectured an analogous property holds for Dirichlet-Selberg domains:
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Conjecture 2.1 (Kap23). LetD = DS(X,Γl) be a finitely-sided Dirichlet-Selberg domain inXn

satisfying the tiling condition. Then the quotient space M = D/ ∼ is complete. In particular,
D is a fundamental domain for the subgroup generated by its facet pairings.

This conjecture motivates our main result, which establishes the same conclusion
under the additional hypothesis that D has finite volume.

2.2. Compactifications ofXn. In this paperWe employ several compactifications of the
symmetric space Xn. In particular, the Satake compactification arises naturally from
the polyhedral structure of Dirichlet-Selberg domains, while the visual compactifica-
tion is essential for studying the geometry and completeness of Xn-manifolds.
SatakeSat60 introduced a family of compactifications of symmetric spaces associated

to faithful finite-dimensional representations of the ambient Lie group. The standard
Satake compactification of Xn corresponds to the identity representation of SL(n,R)
and admits the following description via a projective modelBJ06:

Definition 2.5. The standard Satake compactification of Xn is

Xn
S
= {X̃ ∈ P(Symn(R)) | X ≥ 0},

endowed with the projective topology on Symn(R). The Satake boundary is

∂SXn = Xn
S\Xn.

When the context is clear we shall omit the superscript S and simply write X n.

Proposition 2.1 (BJ06). The standard Satake compactification decomposes as

Xn = Xn ⊔
n−1⊔
k=1

(SL(n,R)Xk) ,

where each Xk = SL(k,R)/SO(k) embeds into ∂SXn via

Xk ↪→ Xn, X 7→ diag(X,On−k),

and SL(n,R) acts by congruence on the set of semi-definite matrices.

More generally, for any g ∈ SL(n,R) and k = 1, . . . , n − 1, the image g.Xk ⊂ ∂SXn

is called a Satake boundary component. Under the projective model, g.Xk identifies
with the set of positive semidefinite n×nmatrices of rank k whose column space is the
k-subspace

span(g.e1, . . . , g.ek) ⊂ Rn.

We denote by ∂S(V ) the boundary component corresponding to a linear subspace V ⊂
Rn, and we say its type is k = dimV . If V = span(v1, . . . ,vk), we write

∂SV = ∂S(v1, . . . ,vk).
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Whenever W ⊂ V , the boundary component ∂S(W ) lies in the boundary of ∂S(V ); we
express this by ∂S(W ) < ∂S(V ), and write ∂S(W ) ≤ ∂S(V ) ifW ⊆ V . The compactifica-
tion of ∂S(V ) is the disjoint union of all subordinate components:

∂S(V ) =
⊔

W⊆V

∂S(W ).

Dually, the star of ∂S(V ) consists of those components whose subspaces contain V :

st(∂S(V )) =
⊔

U⊇V,U⊊Rn

∂S(U).

Since all type-k components lie in a single SL(n,R)-orbit, each ∂S(V ) is diffeomorphic
to the symmetric space Xk. More precisely:

Definition 2.6. Let V ⊂ Rn be a k-dimensional subspace and choose an orthonormal basis
ιV = (v1, . . . , vk) ∈ Rn×k. Define

πV : ∂S(V ) −→ Xk, πV (α) =
ιTV α ιV(

det(ιTV α ιV )
)1/k .

This extends to a projection πV : Xn ⊔ st(∂S(V )) → Xk. In the projective model one similarly
obtains

πV : Xn −→ Xk, πV (X̃) = ι̃TVXιV .

The map πV is well-defined up to the action of SO(k).

As with any non-compact symmetric space, Xn admits a visual compactification ob-
tained by adjoining equivalence classes of geodesic rays.

Definition 2.7 (Ebe96). A geodesic ray in Xn may be written as

γ(t) = g. exp(tA), g ∈ SL(n,R), A ∈ sl(n,R), AT = A.

Two rays γ1, γ2 are equivalent, γ1 ∼ γ2, if

limt→∞(γ1(t), γ2(t)) < ∞.

The visual boundary ∂∞Xn is the set of equivalence classes of geodesic rays in Xn, and the
visual compactification is

Xn
∞

= Xn ⊔ ∂∞Xn,

endowed with the cone topology.

The visual boundary ∂∞Xn carries the structure of a spherical building, identified
with the complex of flags in Rn.

Definition 2.8 (BH13). The complex of flags inRn is the simplicial complex whose k-simplices
correspond to flags

V• = V1 ⊂ V2 ⊂ · · · ⊂ Vk+1 ⊂ Rn,

for k = 0, . . . , n − 2. The facets of a k-simplex are obtained by deleting one subspace from the
flag.
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Proposition 2.2 (BH13). There is an SL(n,R)-equivariant bijection from ∂∞Xn to the complex
of flags in Rn. Concretely, if A has distinct eigenvalues λ1 > · · · > λk with corresponding
eigenspacesW1, . . . ,Wk, then the ray γ(t) = g. exp(tA) determines the flag

g−1.W1 ⊂ g−1.(W1 ⊕W2) ⊂ · · · ⊂ g−1.⊕k−1
i=1 Wi ⊂ Rn.

In particular, the vertices of ∂∞Xn correspond to linear subspaces V ⊂ Rn. We de-
note the ideal vertex associated to V by ξV and call its type k = dimV . Moreover, for
each subspace V ⊂ Rn, the stabilizer of ∂S(V ) ⊂ ∂SXn in SL(n,R) coincides with the
stabilizer of ξV , namely the maximal parabolic subgroup preserving V BJ06.

3. Satake Faces, Busemann-Selberg Function, and Horoballs

In this sectionwe extend the classical Busemann function to defineBusemann-Selberg
functions and their level sets (horoballs) inXn. We then examine the polyhedral struc-
ture of finite-volume Dirichlet-Selberg domains and introduce the notions of Satake
boundary components and Satake faces of such domains. These constructions are es-
sential in the proof of our main theorem.

3.1. Busemann-Selberg Functions andHoroballs inXn. The classical Busemann func-
tion is defined as a limit of distance differences in hyperbolic space (see Definition 1.2).
We generalize this concept by replacing the hyperbolic distance by Selberg’s invariant
s on the symmetric space Xn.

Definition 3.1. Let X ∈ Xn and α ∈ ∂SXn. Choose any path A(t) ⊂ Xn with

lim
t→∞

A(t) = α.

The (type 0) Busemann-Selberg function based at α with reference point X is

bα,X : Xn → R+, bα,X(Y ) = lim
t→∞

s(Y,A(t))

s(X,A(t))
.

Remark 3.1. If α is represented by a singular positive semi-definite matrix (also denoted α),
one obtains the closed-form

bα,X(Y ) =
tr(Y −1α)

tr(X−1α)
, ∀Y ∈ Xn,

which is independent of the choice of matrix representative for α.

Theproof of themain theorem requires the following generalization of the Busemann-
Selberg function, obtained by composing a type-0 Busemann-Selberg function with the
projection onto a Satake boundary component.

Definition 3.2. Let X ∈ Xn and Π is a boundary component of type n− k. Suppose α lies on
∂Π, so that rank(α) < n− k. Let

π : Xn → Xn−k
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be the projection associated toΠ (cf. Definition 2.6). The type-k Busemann-Selberg function
based at (α,Π) with reference point X is

b
(k)
Π;α,X : Xn → R+, b

(k)
Π;α,X(Y ) = bπ(α),π(X−1)−1(π(Y −1)−1) =

tr(π(Y −1)π(α))

tr(π(X−1)π(α))
.

In concrete terms, if ιΠ ∈ Rn×(n−k) has orthonormal columns spanning Π, one checks

b
(k)
Π;α,X(Y ) =

tr(Y −1α) det(ιTΠY
−1ιΠ)

−1/(n−k)

tr(X−1α) det(ιTΠX
−1ιΠ)−1/(n−k)

. (3.1)

If one replaces ιΠ by ιΠQwith Q ∈ SO(n− k), then

det((ιΠQ)TX−1(ιΠQ)) = det(Q)2 det(ιTΠX
−1ιΠ) = det(ιTΠX

−1ιΠ),

so that b(k)Π;α,X is well-defined.

Example 3.1. LetΠ = ∂S(e1, e2) ⊂ X3, a boundary component of type 2 consisting of matrices
with vanishing third rows and columns. Let α = e1 ⊗ e1, a component of type 1 (i.e., a Satake
point) on the boundary of Π. Then, for X = (xij)−1 and Y = (yij)−1, the type one Busemann-
Selberg function is given by

b
(1)
Π;α,X(Y ) =

y11/
√

y11y22 − (y12)2

x11/
√
x11x22 − (x12)2

.

Busemann-Selberg functions can be expressed in terms of the classical Busemann
functions bξ,X . In particular, when α is a rank-one Satake point, the logarithm of a
(type-k) Busemann-Selberg function decomposes as an explicit linear combination of
the corresponding Busemann functions.

Proposition 3.1. LetΠ = ∂S(V ) be a boundary component of type (n−k) ≥ 2, and α = v⊗v
be a Satake point on ∂Π (so v ∈ V ). Denote by ξv and ξV the corresponding vertices in the
visual boundary ∂∞Xn. Then for all X, Y ∈ Xn:

log bα,X(Y ) =

√
n− 1

n
bξv,X(Y ),

log b
(k)
Π;α,X(Y ) =

√
n− 1

n
bξv,X(Y )−

√
k

n(n− k)
bξV ,X(Y ).

Proof. By SL(n,R)-equivariance we may assume v = e1 and V = span(e1, . . . , en−k).
Explicit formulas inHat95 give

bξv,X(Y ) =

√
n

n− 1
log

Y −1
[1]

X−1
[1]

, bξV ,X(Y ) =

√
n

k(n− k)
log

Y −1
[n−k]

X−1
[n−k]

,

where Y −1
[i] denotes the i-th leading principal minor of Y −1. One checks directly that

these equalities coincide with the ratios defining bα,X and b
(k)
Π,α,X , yielding the claimed

linear relations. □
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Since higher-rankαdecompose as sums of rank-onematrices, every Busemann-Selberg
function (of any type) can be written in terms of the original Busemann functions bξ,X .

Themain result in this subsection is the following 1-Lipschitz continuity for Busemann-
Selberg functions.

Proposition 3.2. Let Π and α be as above, and any X, Y1, Y2 ∈ Xn. Then

|log b(k)Π;α,X(Y1)− log b
(k)
Π;α,X(Y2)| ≤

√
n− k − 1

n− k
d(Y1, Y2).

Lemma 3.1. The projection π : Xn → Xn−k from Definition 2.6 is 1-Lipschitz, i.e.,
d(π(Y1), π(Y2)) ≤ d(Y1, Y2).

Proof. Without loss of generality, takeY1 = In. Since π is conjugation by an orthonormal-
column matrix ι, we have π(Y1) = ιTι = In−k. Hence it suffices to prove

d

(
In−k,

ιTY ι

det(ιTY ι)1/(n−k)

)
≤ d(In, Y ),

where Y = Y2. Let λ1 ≥ · · · ≥ λn be the eigenvalues of Y , and let µ1 ≥ · · · ≥ µn−k be
those of ιTY ι. By the Poincaré separation theorem,

λi ≥ µi ≥ λi+k, i = 1, . . . , n− k.

Then, using Lemma A.1 in the Appendix and
∑

i log λi = 0, one obtains

d2(In−k, ι
TY ι/ det(ιTY ι)1/(n−k))

=
n−k∑
i=1

(log µi − log µ)2 ≤
n∑

i=1

(log λi)
2 = d2(In, Y ),

which gives the desired bound. □

Proof of Proposition 3.2. For k = 0, the 1-Lipschitz continuity for bα,X with rank(α) = 1
follows from Proposition 3.1. Any higher-rank α decomposes into rank-1 summands,
so the result extends by linearity.

For k > 0, one reduces to the type-zero case in Xn−k:

| log b(k)Π;α,X(Y1)− log b
(k)
Π;α,X(Y2)|

= |log bπ(α),π(X−1)−1(π(Y −1
1 )−1)− log bπ(α),π(X−1)−1(π(Y −1

2 )−1)|

≤
√

n−k−1
n−k

d(π(Y −1
1 )−1, π(Y −1

2 )−1).

Since d(Y1, Y2) = d(Y −1
1 , Y −1

2 ) and by Lemma 3.1,
d(π(Y −1

1 )−1, π(Y −1
2 )−1) = d(π(Y −1

1 ), π(Y −1
2 )) ≤ d(Y −1

1 , Y −1
2 ) = d(Y1, Y2),

the proposition follows. □

We shall refer to the sublevel sets of the Busemann-Selberg functions as horoballs,
and their level sets as horospheres.
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Definition 3.3. Let α ∈ ∂SXn be a Satake boundary point and fix a reference point X ∈ Xn.
For each r ∈ R+, the closed horoball based at α with parameter r is

B(α, r) = {Y ∈ Xn | bα,X(Y ) ≤ r}.
Replacing “≤” by “<” yields the corresponding open horoball.

The horosphere at level r is the level set
Σ(α, r) = {Y ∈ Xn | bα,X(Y ) = r}.

This construction generalizes to higher-type settings:
Definition 3.4. Let Π be a boundary component of type n − k, let α ∈ ∂Π, and fix X ∈ Xn.
For each r ∈ R+, define the k-th horoball at (α,Π) by

B
(k)
Π (α, r) = {Y ∈ Xn | b(k)Π;α,X(Y ) ≤ r},

and the corresponding k-th horosphere by Similarly, the based at (Π, α) with parameter r is
defined as

Σ
(k)
Π (α, r) = {Y ∈ Xn | b(k)Π;α,X(Y ) = r}.

We illustrate these horospheres by restricting to the 2-plane of diagonal matrices in
X 3, with vertices ei ⊗ ei, i = 1, 2, 3:

e1 ⊗ e1 e2 ⊗ e2

e3 ⊗ e3

e1 ⊗ e1 e2 ⊗ e2

e3 ⊗ e3

e1 ⊗ e1 e2 ⊗ e2

e3 ⊗ e3

Figure 3.1. Left: horospheres Σ(e1 ⊗ e1, r) for varying r.
Center: horospheres Σ(e1 ⊗ e1 + e2 ⊗ e2, r).
Right: type-1 horospheres Σ

(1)
∂S(e1,e2)

(e1 ⊗ e1, r) and Σ
(1)
∂S(e1,e3)

(e1 ⊗ e1, r)

superimposed.

3.2. Asymptotic Behavior of Busemann-Selberg Functions. In this subsection, we de-
scribe the asymptotic behavior of the Busemann-Selberg functions near the Satake bound-
ary of Xn.

Recall that in hyperbolic geometry, the Busemann function ba(y) at an ideal point a
diverges to +∞ whenever y approaches any boundary point other than a. Analogous
phenomena occur in the higher-rank symmetric space Xn.

Lemma 3.2. LetΠ ⊂ Xn be a boundary component of type n−k, pick α ∈ ∂Π, and fixX ∈ Xn.
Suppose β ∈ ∂SXn satisfies

Col(α)\Col(β) ̸= ∅ and Col(Π) ∩ Col(β) ̸= ∅.
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Then for any Y ∈ Xn,
lim
ϵ→0+

b
(k)
Π;α,X(β + ϵY ) = ∞.

Proof. After an SL(n,R)-action, we may assume
Col(Π) = span{e1, . . . , en−k}, Col(α) = span{ei : i ∈ A}, Col(β) = span{ej : j ∈ B},
where A,B ⊂ {1, . . . , n}, with A \ B ≠ ∅ but B ∩ {1, . . . , n− k} ≠ ∅.
Write

(β + ϵY )−1 = M−1ϵ
−1 +M0 +O(ϵ).

The coefficient matrix M−1 of the leading term is semi-positive definite, while its re-
striction to Col(α)\Col(β) is positive definite. Hence

tr((β + ϵY )−1α) = O(ϵ−1)

with a positive coefficient.
On the other hand, let ιΠ = (e1, . . . , e(n−k)). Since Col(Π) ∩ Col(β) ̸= ∅, the principal

(n− k)× (n− k)-minor of M−1 has at least one zero row and column. Therefore

det(ιTΠ(β + ϵY )−1ιΠ) = o(ϵ−(n−k)).

Putting these estimates together,

b
(k)
Π;α,X(β + ϵY ) ∝ tr((β + ϵY )−1α) det(ιTΠ(β + ϵY )−1ιΠ)

−1/(n−k) ϵ→0+−−−→ ∞,

as claimed. □

Differing from the hyperbolic case, the higher-type Busemann-Selberg functions on
Xn can tend to zero as points approach certain boundary strata.

Lemma 3.3. Let Π ⊂ Xn be a boundary component of type n − k, choose α ∈ ∂Π, and fix
X ∈ Xn. Suppose β ∈ ∂SXn satisfied

Col(α) ⊂ Col(β) and Col(Π)\Col(β) ̸= ∅.

Then for any Y ∈ Xn,
lim
ϵ→0+

b
(k)
Π;α,X(β + ϵY ) = 0.

Proof. After an SL(n,R)-action, assume
Col(Π) = span(e1, . . . , en−k), Col(α) = span{ei : i ∈ A}, Col(β) = span{ej : j ∈ B},
with A ⊂ B but {1, . . . , n− k} \ B ≠ ∅.

Writing
(β + ϵY )−1 = M−1ϵ

−1 +M0 +O(ϵ),

one sees thatM−1 vanishes on the columns indexed by B. Since Col(α) ⊂ Col(β),

tr((β + ϵY )−1α) = O(1),

with a positive ϵ0 coefficient.
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Meanwhile, let ιΠ = (e1, . . . , e(n−k)). Because Col(Π)\Col(β) ̸= ∅, the principal (n −
k) × (n − k)-minor of M−1 is nonzero and semi-positive definite, and the minor of M0

is positive definite. Thus
det(ιTΠ(β + ϵY )−1ιΠ) = o(1).

Therefore
b
(k)
Π;α,X(β + ϵY ) ∝ tr((β + ϵY )−1α) det(ιTΠ(β + ϵY )−1ιΠ)

−1/(n−k) ϵ→0+−−−→ 0,

as desired. □

Two further asymptotic phenomena reveal the rich nature of Busemann-Selberg func-
tions. The first arises when the point approaches the star of the corresponding bound-
ary component.

Lemma 3.4. Let Π ≤ Ξ be boundary components of types n− k ≤ n− l in Xn, and let
π : Xn ⊔ st(Ξ) → Xn−l

be the canonical projection. Pick α ∈ ∂Π, β ∈ Ξ, and fix X ∈ Xn. Then for each Y ∈ Xn,

lim
ϵ→0+

b
(k)
Π;α,X(β + ϵY ) = b

(k−l)

π(Π);π(α),π(X−1)−1(π(β)).

In particular, if Π = Ξ, the limit is a Busemann-Selberg function of type 0.

Proof. Denote by
π1 : π(Xn ⊔ st(Π)) = Xn−l ⊔ st(π(Π)) → Xn−k

the canonical projection, so that π1 ◦ π projects Xn ⊔ st(Π) to Xn−k. We first show
lim
ϵ→0+

π((β + ϵY )−1) = π(β)−1.

Under the SL(n,R)-action, we assume

Ξ = ∂S(e1, . . . , en−l), β = diag(β1, O), Y =

(
Y1 Y2

Y T
2 Y3

)
,

with β1, Y1 ∈ Symn−l(R), Y3 ∈ Syml(R). Then

(β + ϵY )−1 =

(
β1 + ϵY1 ϵY2

ϵY T
2 ϵY3

)−1

=

(
β−1
1 +O(ϵ) −β−1

1 Y2Y
−1
3 +O(ϵ)

−Y −1
3 Y T

2 β−1
1 +O(ϵ) ϵ−1Y −1

3 +O(1)

)
.

Hence,

lim
ϵ→0+

π((β + ϵY )−1) =
β−1
1

det(β−1
1 )1/(n−l)

= π(β)−1.

It follows by continuity of trace and determinant that

lim
ϵ→0+

b
(k)
Π;α,X(β + ϵY ) = lim

ϵ→0+

tr(π1(π((β + ϵY )−1))π1(π(α)))

tr(π1(π(X−1))π1(π(α)))

= lim
ϵ→0+

tr(π1(π(β)
−1)π1(π(α)))

tr(π1(π(X−1))π1(π(α)))
= b

(k−l)

π(Π);π(α),π(X−1)−1(π(β)).

□
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Example 3.2. Let Π = ∂S(e1, e2) ⊂ ∂SX3, X = I3, and α = e1 ⊗ e1; let X0 = I2, and
α0 = e1 ⊗ e1 ∈ ∂∞H2. For each β0 ∈ X2 = H2 with β = diag(β0, 0), and for any Y ∈ X3,

lim
ϵ→0+

b
(1)
Π;α,X(β + ϵY ) = bα0,X0(β0).

In the second case, the Busemann-Selberg function diverges because its limit depends
on the direction of approach to the boundary.

Lemma 3.5. Let Π ≤ Ξ be boundary components of types n− k ≤ n− l in Xn, and let

π : Xn ⊔ st(Ξ) → Xn−l

be the canonical projection. Let α ∈ ∂Π, β ∈ ∂SXn, and fix X ∈ Xn satisfying Col(β) ⊕
Col(Ξ) = Rn. Then for every Y ∈ Xn,

lim
ϵ→0+

b
(k)
Π;α,X(β + ϵY ) = b

(k−l)

π(Π);π(α),π(X−1)−1(π(Y )).

In particular, if Π = Ξ, the path limit is a Busemann-Selberg function of type 0.

Proof. Conjugate so that

Ξ = ∂S(e1, . . . , en−l), β = diag(O, β3), Y =

(
Y1 Y2

Y T
2 Y3

)
,

where β3, Y3 ∈ GL(l,R) and Y1 ∈ GL(n− l,R). The block-matrix inversion shows

(β + ϵY )−1 =

(
ϵY1 ϵY2

ϵY T
2 β3 + ϵY3

)−1

=

(
ϵ−1Y −1

1 +O(1) −Y −1
1 Y2β

−1
3 +O(ϵ)

−Y −1
1 Y T

2 β−1
3 +O(ϵ) β−1

3 +O(ϵ)

)
.

Hence
lim
ϵ→0+

π((β + ϵY )−1) = π(Y )−1.

The remainder of the argument follows exactly as in Lemma 3.4, by continuity of trace
and determinant in the definition of b(k)Π;α,X . □

Example 3.3. Let Π = ∂S(e1, e2) ⊂ X3, X = I3, α = e1 ⊗ e1, and β = e3 ⊗ e3. Let X0 = I2
and α0 = e1 ⊗ e1 ∈ H2. Then for any Y ∈ X3, with Y0 ∈ H2 being its projection to the first
two rows and columns, we have

lim
ϵ→0+

b
(1)
Π;α,X(β + ϵY ) = bα0,X0(Y0).

To conclude, we summarize the behavior of b(k)Π;α,X to the Satake boundary.

Conditions Col(α) ⊆ Col(β) Col(α)\Col(β) ̸= ∅
Col(Π)\Col(β) ̸= ∅ Col(Π) ⊆ Col(β) Col(β) ∩ Col(Π) = ∅ Col(β) ∩ Col(Π) ̸= ∅

limϵ→0+ b
(k)
Π;α,X

(β + ϵY )
0 bπ(α),π(X−1)−1(π(β)) bπ(α),π(X−1)−1(π(Y )) ∞
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3.3. Finite Volume Convex Polytopes in Xn. A convex polytope D ⊂ Xn is by defini-
tion the intersection of finitely many affine half-spaces in Symn(R) with the hypersur-
face Xn,hyp. Equivalently, one may view

D = D ∩ Xn,proj,

whereD ⊂ P(Symn(R)) is a projective convex polytope with finitely many faces.
In Proposition B.1 in the Appendix, we show that D has finite volume (with respect

to the Riemannian metric on Xn) if and only if its corresponding projective polytope
D lies entirely inside the Satake compactification Xn. We therefore adopt the following
equivalent criterion:

Definition 3.5. A convex polytope D ⊂ Xn is said to have finite volume if there exists a
projective polytopeD ⊂ Xn ⊂ P(Symn(R)) such that

D = D ∩ Xn

In this case,D is the Satake compactification of D, denoted D = D.
The Satake boundary of D is then

∂SD = D ∩ ∂SD.

Since ∂SXn decomposes into boundary components indexed by subspaces of Rn, the
same holds for ∂SD:

Definition 3.6. LetD ⊂ Xn be a finitely-sided convex polytope of finite volume. For each linear
subspace V ⊂ Rn, define the Satake boundary component

ΦV = ∂SD ∩ ∂S(V ),

where ∂S(V ) is the corresponding component of ∂SXn. The integer k = dimV is called the type
of ΦV .

It is immediate that the closure of a boundary component decomposes into smaller
strata:

ΦV =
⊔

W⊂V

ΦW .

Furthermore, the Satake boundary of any finite-volume, finitely-sided polytope admits
a natural combinatorial description:

Proposition 3.3. Let D ⊂ Xn be a finitely-sided convex polytope of finite volume, with Satake
compactification D. Then for each nonempty boundary component ΦV ⊂ ∂SD, its closure ΦV

is a face of the projective polytope D.

Proof. Write
D = conv{α1, . . . , αm},

where each vertex αi ∈ Xn. Let V =⊂ Rn be a subspace such that ΦV = ∂SD ∩ ∂S(V ) is
non-empty, and

I = {i | αi ∈ ∂S(V )}.
We claim:
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• The convex hull conv({αi}i∈I) is a face of D.
• This convex hull coincides with ΦV .

To prove the first claim, note that α ∈ ∂S(V ) if and only if the associated bilinear form
vanishes on V ⊥. For each j /∈ I , the kernel of αj in V ⊥ is a proper Zariski-closed subset,
so we can choose u ∈ V ⊥ and ϵ > 0 such that

uTαi u = 0 (i ∈ I), and uTαj u ≥ ϵ (j /∈ I).

The hyperplane {α | uTαu = 0} separates conv({αi}i∈I) from conv({αj}j /∈I), proving
that the former is indeed a face.

For the second claim, observe that ΦV = ∂S(V )∩D is convex and contains all αi with
i ∈ I , so conv({αi}i∈I) ⊆ ΦV . Conversely, any point of ΦV is a convex combination
of the vertices α1, . . . , αm, but the above separation also applies to ΦV , implying that
vertices with j /∈ I cannot appear in such combinations. Therefore ΦV = conv({αi}i∈I),
as claimed. □

From this it follows:

Corollary 3.1. Let D ⊂ Xn be a finitely-sided, finite-volume convex polytope. Then:
• There are only finitely many subspaces V ⊂ Rn for which ΦV ̸= ∅. Equivalently,

∂SD =
⊔
V ∈V

ΦV ,

is a finite disjoint union.
• For each nonempty boundary component ΦV of type k = dim(V ), its image under the
canonical identification πV : ∂S(V ) → Xk is again a finitely-sided convex polytope of
finite volume in Xk.

• The Satake boundary of πV (ΦV ) decomposes as

∂SπV (ΦV ) = πV

( ⊔
W∈V, W⊊V

ΦW

)
.

We call any face of a boundary component Φ ⊂ ∂SD (including Φ itself) a Satake
face of D, and denote the set of all Satake faces by FS(D).

4. Preliminary Lemmas for the Main Theorem

LetD be an exact hyperbolic Dirichlet domain satisfying the tiling condition, and let
M = D/ ∼ be the associated quotient manifold (or orbifold) by gluing up the facets.
The completeness ofM follows from two facts:

• Balls centered in the thick part ofM are compact up to the injectivity radius.
• Lemma 1.1 implies that the thin part of M consists solely of cusps, which like-
wise admit compact neighborhoods.

In this section, we show that an analogous structure holds for the thin part of a finite-
volume Dirichlet-Selberg quotient in Xn.
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4.1. Tangency ofHorospheres to the Satake Boundary. In hyperbolic space, any horo-
sphere based at an ideal point a ∈ Hn meets the visual boundary only at a, and does
so tangentially. A similar tangency phenomenon occurs for horospheres in Xn, with
additional cases to consider.

Proposition 4.1. Let α ∈ ∂SXn lie in the boundary component Π, and fix r > 0. Denote the
closed horoball and its boundary by

B = B(α, r), Σ = Σ(α, r), Σ = ∂B.

Then:
• The horosphere meets the Satake boundary exactly along the closure of the star of Π:

Σ ∩ ∂SXn = st(Π).

• For each Satake point β ∈ st(Π), the hypersurfaces Σ and ∂SXn are tangent at β.

Proof. Boundary contact. Let β ∈ ∂SXn. By the asymptotic lemmas of Subsection 3.2:
• If β ∈ st(Π), then Col(β) ⊇ Col(α), so bα(Y ) → 0 as Y → β. Hence β ∈ B(α, r).
• If β /∈ st(Π), then in any neighborhood of β, bα(Y ) → +∞ along any approach
direction, so β /∈ B(α, r).

This shows
Σ ∩ ∂SXn = B ∩ ∂SXn = st(Π).

Tangency. Fix β ∈ st(Π). Conjugate so that

β =

(
β0 0
0 0

)
, β0 ∈ GL(n− l,R).

Write a general tangent direction at β in projective coordinates as

A =

(
A1 AT

2

A2 A3

)
, A3 ∈ Matl(R).

With reference point X = In, the horosphere Σ(α, r) is cut out (in projective space) by

f(Y ) =
(
tr(αY )

)n − rn
(
detY

)n−1
= 0.

Expanding f(β + tA) for small t, the dominant term in rn(det(β + tA))n−1 is

rn(det(β0) det(A3))
n−1t(n−1)l,

while
(
tr(α(β + tA))

)n has strictly higher order in t. Thus A lies in the tangent cone to
Σ if and only if

det(A3) = 0.

On the other hand, the Satake boundary ∂SXn in projective coordinates is the hyper-
surface detY = 0. Its linearization at β likewise vanishes on exactly those A for which
det(A3) = 0.
Hence at each β ∈ st(Π), the two hypersurfaces Σ and ∂SXn share the same tangent

cone, proving they are tangent. □
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We have a more generalized tangency property for higher-type cases.

Proposition 4.2. Let Ξ ⊂ Xn be a boundary component of type n − k, and let Π < Ξ be
a smaller boundary component containing a Satake point α. For each r > 0, denote the k-th
horosphere and its boundary by

B = B
(k)
Ξ (α, r), Σ = Σ

(k)
Ξ (α, r), Σ = ∂B.

Then:
• The horosphere meets the Satake boundary at:

Σ ∩ ∂SXn = st(Π) \
(⊔
Ξ0≥Ξ

(
Ξ0 \B(k−l)

Ξ (α, r)
))

,

where each Ξ0 ≥ Ξ is a boundary component of type n − l and B
(k−l)
Ξ (α, r) is the

corresponding (k − l)-th horoball.
• For each Satake point

β ∈ st(Π) \
(⊔
Ξ0≥Ξ

(
Ξ0 \B(k−l)

Ξ (α, r)
))

,

the hypersurfaces Σ and ∂SXn are tangent at β.

Proof. Boundary contact. By the asymptotic lemmas of Subsection 3.2, any Satake point
β falls into exactly one of the following cases, determining whether β ∈ B:

• If β ∈ st(Π) \ st(Ξ), then Col(β) ⊇ Col(α) and Col(Ξ) ̸⊂ Col(β), so b
(k)
Ξ;α(Y ) → 0

as Y → β, and thus β ∈ B.
• If β ∈ st(Ξ), then Col(β) ⊇ Col(Ξ) and b

(k)
Ξ;α(Y ) → b

(k−l)
π(Ξ);π(α)(π(β)) as Y → β, so

β ∈ B precisely when that limit is ≤ r.
• If β is not in the closure of previous cases, b(k)Ξ;α(Y ) → +∞ along any approach,
so β /∈ B.

To see tangency, fix any such β ∈ Σ ∩ ∂SXn. Similar to the previous lemma, a tangent
vectorA ∈ TβP(Symn(R)) lies in the tangent cone ofΣ if and only if it lies in that of either
the equation {Y | det(πΞ(Y )) = 0} or the boundary defining inequality of Xn. But the
latter hypersurface entirely contains Xn, making the two tangent cones coincide. This
proves the tangency of Σ and ∂SXn. □

4.2. Satake Face Cycles. In hyperbolic geometry, a finite-volume manifold M is com-
plete precisely when each cusp link L[a] is a Euclidean isometrymanifold, i.e. the holo-
nomy similarity transformation of every generator of π1(L[a]) lies in the Euclidean isom-
etry groupRat94;Gol22. This condition is satisfied by Dirichlet domain quotients, where
each ideal cycle preserves the corresponding Busemann function ba

Kap23.
We generalize this toXn by defining cycles of Satake faces and proving they preserve

Busemann-Selberg functions.
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Definition 4.1. LetD ⊂ Xn be a finite-volume, finitely-sided polytope. Denote byF(D) its set
of (ordinary) faces, and by FS(D) its set of Satake faces, each Satake face Φ lying in a boundary
component Π.

• We say a Satake face Φ ∈ FS(D) is incident with a face F ∈ F(D) if Φ ⊂ F .
• More precisely, the pair (Φ,Π) is incident with F if Φ ⊆ F ∩ Π, and it is precisely
incident if Φ = F ∩ Π.

• A pairing of two Satake faces Φ,Φ′ ∈ FS(D) is given by a facet-pairing isometry gF
so that

Φ ⊂ F , Φ′ ⊂ F ′
(
F ′ = g−1

F F
)
, g−1

F .Φ = Φ′.

We write [Φ] for the equivalence class of Φ under such pairings.
• A cycle of the Satake face Φ is a finite sequence {Φ0,Φ1, . . . ,Φm} of faces in [Φ] with
Φ0 = Φm = Φ, and isometries gi so that Φi = gi.Φi−1 for i = 1, . . . ,m. The product

w = g1 g2 · · · gm ∈ SL(n,R)

is called the word of the cycle.

Below is our generalized preservation property for usual Busemann-Selberg func-
tions under Satake face cycles.

Proposition 4.3. Let D = DS(X,Γ0) ⊂ Xn be a Dirichlet-Selberg domain satisfying the
hypotheses of Theorem 1.2, and let Φ be a Satake face of type n− k. Suppose {Φ0,Φ1, . . . ,Φm}
is a cycle of Φ with associated word

w = g1g2 · · · gm ∈ SL(n,R).

Then:
• The action of w on the boundary component span(Φ) has finite order.
• There exists a Satake point αΦ in the relative interior of Φ such that w.αΦ = αΦ.
• For every Y, Z ∈ Xn,

bαΦ,Z(Y ) = bαΦ,Z(w.Y ).

Proposition 4.3 rests on the following equivariance lemma.

Lemma 4.1. Let g ∈ SL(n,R), fix X ∈ Xn, and let α ∈ ∂SBis(X, g−1.X). Then:
(1) tr(X−1α) = tr(X−1(g.α)).
(2) For all Y ∈ Xn,

bα,X(Y ) = bg.α,X
(
g.Y
)
.

Proof. Since α lies in the Satake boundary of the bisector Bis(X, g−1.X), one has

tr(X−1α) = tr((g−1.X)−1α) = tr(gX−1gTα) = tr(X−1(g.α)),

proving (1).
For (2), note

tr((g.Y )−1(g.α)) = tr(g−1Y −1(g−1)TgTαg) = tr(g−1Y −1αg) = tr(Y −1α).
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Hence
bα,X(Y ) =

tr(Y −1(α))

tr(X−1(α))
=

tr((g.Y )−1(g.α))

tr(X−1(g.α))
= bg.α,X(g.Y ).

□

Proof of Proposition 4.3. Let {Φ0,Φ1, . . . ,Φm} be a cycle of the Satake face Φ, with Φi =
gi ·Φi−1 for i = 1, . . . ,m andΦ0 = Φm = Φ. For any interior point ξ ∈ span(Φ), set ξ0 = ξ,
ξi = gi · ξi−1 for i = 1, . . . ,m.

Since each gi pairs facets of the Dirichlet-Selberg domain, we have ξi−1 ∈ Φi−1 ⊂
Bis(X, g−1

i .X). By Lemma 4.1,
tr(X−1ξi−1) = tr(X−1(gi.ξi−1)) = tr(X−1ξi).

Iterating gives
tr(X−1ξ) = tr(X−1(w.ξ)), w = g1 · · · gm. (4.1)

Finite-order on theboundary component. Conjugate so that span(Φ) = ∂S(e1, . . . , en−k),
and let π : Xn ⊔ st(span(Φ)) → Xn−k be the projection dropping the last k coordi-
nates (with determinant normalization). Then w preserves span(Φ), and its restriction
π(w) ∈ GL(n− k,R) is a nonzero multiple of an Xn−k-isometry.

Define
s : span(Φ) → R, s(ξ) =

tr(X−1ξ)

det(ιTΦξιΦ)
1/(n−k)

,

where ιΦ is the n× (n− k)matrix selecting the first n− k coordinates. Then by (4.1),

s(w.ξ) =
tr(X−1(w.ξ))

det(π(w).(WTξW ))1/(n−k)

=
tr(X−1ξ)

|det(π(w))|2/(n−k) det(WTξW )1/(n−k)
=

s(ξ)

|det(π(w))|2/(n−k)
.

On the other hand, s attains a uniqueminimum at α = diag(π(X−1)−1, Ok). Uniqueness
forces w.α = α and |det(π(w))| = 1. Hence π(w) lies in the compact subgroup O(n− k)
and, because it preserves the polytope π(Φ), has finite order.
Existence of a fixed Satake point. If (π(w))l = In−k for some l > 0, then the barycen-

ter of the orbit {ξ, π(w)ξ, . . . , π(w)l−1ξ} is a π(w)-fixed point in the interior of Φ. Lifted
back to Xn, this yields the desired αΦ.

Preservation of the Busemann-Selberg function. Write α0 = αΦ and αi = gi.αi−1.
By Lemma 4.1, for every Y ∈ Xn,

bαi−1,X(Y ) = bgi.αi−1,X(gi.X) = bαi,X(gi.Y ).

Iterating from i = 1 tom and using αm = α0 gives
bαΦ,X(Y ) = bαΦ,X(w.Y ),

and replacing X by any Z ∈ Xn preserves the equality. □

A similar preservation property holds for higher-type Busemann-Selberg functions
as well.
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Proposition 4.4. Let D = DS(X,Γ0) ⊂ Xn be a Dirichlet-Selberg domain satisfying the
hypotheses of Theorem 1.2. Let Φ be a Satake face of type n − k, and Ψ be a Satake face of type
n − l with l < k such that Ψ > Φ. Denote by Π = span(Ψ) the corresponding boundary
component.

If w is the word of a common cycle of both Φ and Ψ, and if αΦ ∈ Φ is a w-fixed interior point
(cf. Proposition 4.3), then for all Y, Z ∈ Xn,

b
(l)
Π;αΦ,Z

(Y ) = b
(l)
Π;αΦ,Z

(w.Y ).

Proof. Recall from (3.1) that

b
(l)
Π;α,Z(Y ) = bα,Z(Y ) det

(
ιTΠY

−1ιΠ
)−1/(n−l)

,

where ιΠ is the n× (n− l)matrix whose columns span Π. By Proposition 4.3, the usual
Busemann-Selberg function bαΦ,Z is w-invariant:

bαΦ,Z(Y ) = bαΦ,Z(w · Y ).

It remains to check
det(ιTΠY

−1ιΠ) = det(ιTΠ(w.Y )−1ιΠ).

Since w preserves the boundary component Ψ, its action on ιΠ satisfies
(wT)−1ιΠ = ιΠw

′, w′ ∈ GL(n− l,R).
In fact, matricesW and (wT)−1W represent boundary componentsΨ and w−1.Ψ, which
are assumed to be the same component. Therefore, Hence

det(ιTΠ(w.Y )−1ιΠ) = det(((wT)−1ιΠ)
TY −1((wT)−1ιΠ))

= det((ιΠw
′)TY −1(ιΠw

′)) = det(w′)2 det(ιTΠY
−1ιΠ).

Finally, Proposition 4.3 ensures that πΠ(w) has finite order, so det(w′)2 = 1. Therefore
the two determinants agree, and the l-th Busemann-Selberg function isw-invariant. □

4.3. Riemannian Dihedral Angles in Dirichlet-Selberg Domains. For Dirichlet do-
mains in hyperbolic spaces, a critical property is the independence of Riemannian di-
hedral angles from base point choices. While this fails for Dirichlet-Selberg domains in
Xn, understanding the dependence of this angle on the choice of base point is crucial
for the proof of the main theorem.

As we defined earlier, a plane P ⊂ Xn of codimension k is a non-empty intersection
of k linearly-independent hyperplanes. In addition, each of these hyperplanes is a per-
pendicular plane for an indefinite matrix A ∈ Symn(R). Therefore, the plane can be
described as

P =

(
k⋂

i=1

A⊥
i

)
= span(A1, . . . , Ak)

⊥.

In a Dirichlet-Selberg domain, a pair of adjacent faces of codimension k spans two
planes P and P ′ that intersect along P ∩P ′ of codimension k+1. They can be described
as

P = span(A1, . . . , Ak−1, B)⊥, P ′ = span(A1, . . . , Ak−1, B
′)⊥, (4.2)
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for linearly independent indefinite matrices A1, . . . , Ak−1, B, and B′ ∈ Symn(R).

Lemma 4.2. Let P and P ′ be planes described as in (4.2). Then, for any point X ∈ P ∩ P ′,
the Riemannian dihedral angle ∠X(P, P

′) is given by:

∠X(P, P
′) = arccos

((∧k−1
i=1 Ai

)
∧B,

(∧k−1
i=1 Ai

)
∧B′

)
X−1√∥∥∥(∧k−1

i=1 Ai

)
∧B

∥∥∥
X−1

·
∥∥∥(∧k−1

i=1 Ai

)
∧B′

∥∥∥
X−1

,

where (·, ·)X−1 denotes the inner product, and ||·||X−1 the norm, on the exterior algebra
∧k(Symn(R))

induced by the inner product on Symn(R):
⟨A1, A2⟩X−1 = tr(XA1XA2), ∀A1, A2 ∈ Symn(R).

Proof. In the hypersurface model, the tangent space TXP is a subspace of TXRn(n+1)/2:

TXP =
{
C ∈ TXRn(n+1)/2

∣∣tr(AiC) = 0, tr(BC) = 0, tr(X−1C) = 0
}
.

Similarly:

TXP
′ =
{
C ∈ TXRn(n+1)/2

∣∣tr(AiC) = 0, tr(B′C) = 0, tr(X−1C) = 0
}
.

Recall that the dihedral angles between linear subspaces of TXRn(n+1)/2 are measured
by the inner product given by the Killing form:

⟨C,C ′⟩X = tr(X−1CX−1C ′).

Thus, the dihedral angle between TXP and TXP
′ is equal to their orthogonal comple-

ments with respect to ⟨−,−⟩X . These can be expressed explicitly in terms of bases:

(TXP )⊥ = span(X,XA1X, . . . , XAk−1X,XBX),

(TXP
′)⊥ = span(X,XA1X, . . . , XAk−1X,XB′X).

The angle between these complementary spaces is then given by

arccos

det

⟨XAiX,XAjX⟩X ⟨XAiX,XBX⟩X ⟨XAiX,X⟩X
⟨XB′X,XAjX⟩X ⟨XB′X,XBX⟩X ⟨XB′X,X⟩X
⟨X,XAjX⟩X ⟨X,XBX⟩X ⟨X,X⟩X


1≤i,j≤k−1√√√√√det

⟨XAiX,XAjX⟩X ⟨XAiX,XBX⟩X ⟨XAiX,X⟩X
⟨XBX,XAjX⟩X ⟨XBX,XBX⟩X ⟨XBX,X⟩X
⟨X,XAjX⟩X ⟨X,XBX⟩X ⟨X,X⟩X


1≤i,j≤k−1

det

⟨XAiX,XAjX⟩X ⟨XAiX,XB′X⟩X ⟨XAiX,X⟩X
⟨XB′X,XAjX⟩X ⟨XB′X,XB′X⟩X ⟨XB′X,X⟩X
⟨X,XAjX⟩X ⟨X,XB′X⟩X ⟨X,X⟩X


1≤i,j≤k−1

.

To simplify this expression, note that

⟨XAiX,XAjX⟩X = tr(X−1XAiXX−1XAjX) = tr(XAiXAj) = ⟨Xi, Xj⟩X−1 .

Additionally, since X ∈ P ∩ P ′, we have that
⟨X,XAiX⟩X = tr(AiX) = 0, ⟨X,XBX⟩X = 0, ⟨X,XB′X⟩X = 0,

and
⟨X,X⟩X = tr(In) = n.

These simplify the formula into the form as presented in Lemma 4.2. □
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Example 4.1. If P = B⊥ and P ′ = B′⊥ are hyperplanes, then the Riemannian dihedral angle
at any X ∈ P ∩ P ′ is given as

∠X(P, P
′) = arccos

tr(XBXB′)√
tr((XB)2)tr((XB′)2)

.

An essential corollary of Lemma 4.2 is the following asymptotic behavior of Riemann-
ian dihedral angles to the Satake boundary:

Proposition 4.5. Suppose that P and P ′ are planes of the same dimension in Xn, and P ∩ P ′

is of codimension 1 in both P and P ′. Assume further that Π is a Satake plane of type n− k in
Xn, and is transverse to both P and P ′. Then for each α ∈ P ∩ P ′ ∩ Π and Y ∈ P ∩ P ′, the
limit of Riemannian dihedral angle

lim
ϵ→0+

∠α+ϵY (P, P
′) = ∠π(α)(π(P ∩ Π), π(P ′ ∩ Π)).

Here, π is the diffeomorphism from Π to Xn−k given in Definition 2.6.

Proof. Without loss of generality, let Col(Π) = span(e1, . . . , en−k), and let

P = span(A1, . . . , Al−1, B)⊥, P ′ = span(A1, . . . , Al−1, B
′)⊥,

For i = 1, . . . , l−1, denote the minors of the first (n−k) rows and columns ofAi, B and
B′ by Ai,0, B0, and B′

0, respectively. Then,

π(P ∩ Π) = span(A1,0, . . . , Al−1,0, B0)
⊥, π(P ′ ∩ Π) = span(A1,0, . . . , Al−1,0, B

′
0)

⊥.

The transversality of Π to P and P ′ ensures that A0,1, . . . , A0,l−1, B0 and B′
0 are linearly

independent. By Lemma 4.2, we have

∠π(α)(π(P ∩ Π), π(P ′ ∩ Π)) = arccos

(∧l−1
i=1Ai,0 ∧B0,

∧l−1
i=1Ai,0 ∧B′

0

)
α−1
0√∣∣∣∣∣∣∧l−1

i=1 Ai,0 ∧B0

∣∣∣∣∣∣
α−1
0

·
∣∣∣∣∣∣∧l−1

i=1Ai,0 ∧B′
0

∣∣∣∣∣∣
α−1
0

,

whereα = diag(α0, O), i.e., α0 = π(α) is theminor consisting of the first (n−k) rows and
columns of α. This suggests that α1/2Aiα

1/2 = diag(α
1/2
0 Ai,0α

1/2
0 , O), for i = 1, . . . , l − 1.

Hence, as ϵ → 0, the inner products for the Riemannian angle have the following limits:

lim
ϵ→0

⟨Ai, Aj⟩(α+ϵY )−1 = tr(αAiαAj)

= tr((α1/2Aiα
1/2)(α1/2Ajα

1/2)) = tr((α
1/2
0 Ai,0α

1/2
0 )(α

1/2
0 Aj,0α

1/2
0 ))

= tr(α0Ai,0α0Aj,0) = ⟨Ai,0, Aj,0⟩α−1
0
.

By substituting these limits into the expression of ∠α+ϵY (P, P
′), we obtain that

lim
ϵ→0+

∠α+ϵY (P, P
′) = ∠π(α)(π(P ∩ Π), π(P ′ ∩ Π)).

□
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Example 4.2. Given hyperplanes A⊥ and B⊥ in X3, A = diag(A0, 0) and B = diag(B0, 0),
where

A0 =

(
0 −1
−1 1

)
, B =

(
1 −1
−1 0

)
Then, A⊥

0 = A⊥ ∩ ∂S(e1, e2) and B⊥
0 = B⊥ ∩ ∂S(e1, e2) are identified with geodesics in H2,

meeting at the point

α0 =

(
1 1/2
1/2 1

)
,

with a Riemannian angle of 2π/3. By Proposition 4.5, for any line in A⊥ ∩B⊥ that diverges to
α = diag(α0, 0) ∈ ∂SX3, the Riemannian dihedral angle between A⊥ and B⊥ based at a point
on this line will converge to 2π/3, when the base point diverges to α.

5. Proof of the Main Theorem

Let D = DS(X,Γ) ⊂ X3 be an exact, finitely-sided Dirichlet-Selberg domain of finite
volume satisfying the tiling condition. Recally that D has up to finitely many Satake
boundary components of type two, and these components meet only at certain Satake
vertices of type one. We prove Theorem 1.2 (the main result of this paper) in two steps:

(1) In Subsection 5.1, we construct a subset

D(1) ⊂ D,

namely a disjoint union of small neighborhoods around each Satake vertex of
type one, such thatD(1) meets only the faces incident to those vertices. We then
show there exists r1 > 0 so that for every X ∈ D(1), the r1-ball centered at its
image X̃ ∈ M := D/∼ is complete. Remove these neighborhoods from M , we
obtain a manifold (or orbifold) with boundary, denoted by M ′. Let D′ ⊂ D be
the preimage of M ′. By construction, the Satake boundary components of type
two in D′ are now pairwise disjoint.

(2) In Subsection 5.2, we similarly define

D(2) ⊂ D′

as a disjoint union of neighborhoods around each remaining boundary compo-
nent of type two, meeting only their incident faces. We then prove there exists
r2 > 0 so that for all X ∈ D(2) ⊂ D′, the r2-ball around its image in M ′ is
complete. Since the complement D \ (D(1) ∪ D(2)) is bounded, it follows that
M = D/∼ is complete.

Throughout the proof we assume, without loss of generality, that the domainD is cen-
tered at X = I , the identity matrix.
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5.1. Part I: Behavior Near Satake Vertices of TypeOne. We begin by analyzing the cy-
cle structure of Satake vertices of type 1. Since Busemann-Selberg functions depend on
chosen reference points, we select them so as to satisfy a natural vertex-cycle condition:

Lemma 5.1. Let α ∈ ∂SD be a Satake vertex of type 1, and let Φ be a Satake face of type 2
containing α. Denot by η and η′ the two edges of Φ meet at α, and w be any word in the cycle
of edges sending η to η′. Then w also fixes α. Writing the boundary component Π = span(Φ),
there exists a constant C ≥ 1, depending only on D and α, such that for all Y ∈ X3,

C−1b
(1)
Π;α,X(Y ) ≤ b

(1)
Π;α,X(w.Y ) ≤ Cb

(1)
Π;α,X(Y ).

Proof. First, let w0 be any cycle of the edge η. By Proposition 4.3, the restriction of w0 to
span(Φ) has finite order, hence is not loxodromic. It follows that w0 fixes every point of
Φ and preserves the Busemann-Selberg function b

(1)
Π;α,X .

Next, supposew andw′ are twowords in the edge cycle sending η to η′. Both preserve
the boundary component Π, so both scale b(1)Π;α,X by the same factor CΦ > 0. Reversing
the cycle rescales by C−1

Φ . That is,

b
(1)
Π;α,X(w.Y ) = CΦ b

(1)
Π;α,X(Y ), b

(1)
Π;α,X(w

−1.Y ) = C−1
Φ b

(1)
Π;α,X(Y ).

Since there are only finitely many such vertices αi in the orbit of α and faces Φi through
each αi, we may set

C = max
αi,Φi

{CΦi
, C−1

Φi
},

which yields the desired uniform bound. □

ByProposition 4.3 andLemma5.1, wemaynowchoose reference-point-free Busemann-
Selberg functions bαi

and b
(1)
Πi;αi

for each αi ∈ [α], so that:
• If αj = w.αi for some w in the vertex cycle, then

bαi
(Y ) = bαj

(w.Y ), for any Y ∈ X3.

• If ηi, ηj are edges in the same edge orbit [η], with ηj = w.ηi and corresponding
boundary components Πi, Πj , then

C−1b
(1)
Πi;αi

(Y ) ≤ b
(1)
Πj ;αj

(w.Y ) ≤ Cb
(1)
Πi;αi

(Y ).

We denote the associated horoballs (independent of reference points) by B(αi, r) and
B

(1)
Πi
(αi, r). Since D has only finitely many faces, we define a neighborhood of α inside

D by
B

(1)
D (α, r) =

⋂
Φ∋α

B
(1)
span(Φ)(α, r),

where the intersection runs over all type-2 Satake faces Φ ∋ α.
As the parameter r approaches to zero, the lemma below implies that the neighbor-

hood B
(1)
D (α, r) shrinks to the Satake vertex α:
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Lemma 5.2. For any r > 0, the closure B(1)
D (α, r)∩D contains a neighborhood of α withinD.

Moreover, the intersection
∞⋂

m=1

(
B

(1)
D (α, 1/m) ∩D

)
= {α}.

Proof. For the first assertion, we need to show that B(1)
Π (α, r) contains a neighborhood

of α in D, where Π = span(Φ) and Φ is any type 2 Satake face containing α.
To establish this, let S be a sphere in RP5 centered at α that intersects every face or

Satake face ofD containing α. Then, the convex hull of α⊔
(
S ∩D

)
contains a neighbor-

hood of α inD. We aim to show that this neighborhood is contained in B
(1)
Π (α, r)when

the radius of S is sufficiently small. This is justified by showing that the line segment
from α to α + ϵX is entirely contained within B

(1)
Π (α, r), where X is a point in S ∩ D,

and ϵ > 0 depends on X . Such points X can be categorized into three cases:
(i) X ∈ D,
(ii) X ∈ Φ, or
(iii) X lies on a type 2 Satake face distinct from Φ.
Case (i): When X ∈ D, this containment is straightforward.
Case (ii): When X ∈ Φ, Lemma 3.4 implies that for any smooth curve α + ϵX + tY

approaching α + ϵX in D, where Y ∈ X3, the Busemann-Selberg function b
(1)
Π;α(α +

ϵX + tY ) converges to bπ(α)(π(α + ϵX)), a value less than r for sufficiently small ϵ > 0.
Proposition 4.2 then implies that α+ ϵX is on the type-one horosphere Σ(1)

Π (α, r). Thus,
the segment from α to α + ϵX remains within B

(1)
Π (α, r).

Case (iii): WhenX is in a type 2 Satake face distinct from Φ, Lemma 3.3 ensures that
the entire line segment from X to α lies within B

(1)
Π (α, r).

Since S ∩ D is compact and b
(1)
Π;α extends continuously to Satake facets in ∂SD that

contain α, we can select ϵ uniformly over all X ∈ S ∩D. Thus, a neighborhood of α is
indeed contained in B

(1)
Π (α, r).

For the second assertion, notice that for any Φ ∋ α and Π = span(Φ), the intersection
∞⋂

m=1

(
B

(1)
Π (α, 1/m) ∩D

)
excludes all points in D; by Lemma 3.4, it also excludes all points in the Satake face Φ,
except for α itself. Taking the intersection over all type 2 Satake faces Φ containing α
yields:

∞⋂
m=1

(
B

(1)
D (α, 1/m) ∩D

)
=
⋂
Φ

∞⋂
m=1

(
B

(1)
Π (α, 1/m) ∩D

)
= {α}.

□
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Lemma 5.2 ensures the existence of a constant r > 0 such that the sets B(1)
D (α, r) for

all type 1 Satake vertices α ∈ FS(D) form a disjoint union⊔
α

B
(1)
D (α, r),

consisting of neighborhoods of those type 1 Satake vertices in D. The second assertion
of the lemma further implies that r can be selected such that each of these component
is separated from any face not incident with the corresponding Satake vertex.

We still need a lemma concerning certain relationships between type-one horoballs
and classic horoballs based at the same Satake vertex:
Lemma 5.3. There exists certain constants r′ > 0 and ϵ > ϵ′ > 0, such that:

(1) For each type-2 Satake face Φ ∋ α with Π = span(Φ), and for any face G ∈ F(D)
either disjoint from Π or precisely incident with (α,Π), the set

B(α, r′)\B(1)
Π (α,C−1e−2ϵr)

lies at distance at least ϵ from G.
(2) If η and η′ are the two edges of Φ meeting at α, and F, F ′ ∈ F(D) are faces precisely

incident with η and η′ respectively, then their intersections with

B(α, r′)\B(1)
Π (α,C−1e−2ϵr),

are separated by distance at least ϵ′.
(3) For any two distinct type-2 Satake faces Φ,Φ′ ∋ α,

D ∩B(α, r′) ⊂ D ∩
(
B

(1)
Φ (α,C−1e−2ϵr) ∪B

(1)
Φ′ (α,C

−1e−2ϵr)
)
.

Proof. (1). Consider the nested intersections

D ∩
(

∞⋂
m=1

B(α, 1/m)\B(1)
Π (α,C−1r)

)
.

Similar to the proof of Lemma 5.2, this is the complement of a horoball in Φ based at
α, so it is disjoint from any face G ∈ F(D) either disjoint from Π or incident only at
(α,Π). By the 1-Lipschitz property for Busemann-Selberg functions (Proposition 3.2),
for sufficiently small r′ > 0we obtain a uniform buffer of 3ϵ between

B(α, r′)\B(1)
Π (α,C−1r)

for all such faces G ∈ F(D). This yields our first assertion.
(2). Similarly, for each of the two edges η, η′ through α, the infinite intersections

F ∩
(

∞⋂
m=1

B(α, 1/m)\B(1)
Π (α,C−1e−2ϵr)

)
and

F ′ ∩
(

∞⋂
m=1

B(α, 1/m)\B(1)
Π (α,C−1e−2ϵr)

)
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are the complements of a horoball in the Satake edges η and η′. Hence, by shrinking r′ if
necessary, one finds ϵ′ so that the corresponding truncated regions are at least ϵ′ apart,
proving, proving our second assertion.

(3). Finally, the infinite intersection

D ∩
(

∞⋂
m=1

B(α, 1/m)

)
is the union of all Satake faces containing α. Since every such face is contained in at
least one of the two horoballs B(1)

Φ (α,C−1e−2ϵr) or B(1)
Φ′ (α,C−1e−2ϵr), it follows that for

sufficiently r′ > 0,D∩B(α, r′) is contained in the union of these two type-one horoballs.
□

With constants C, r, r′, and ϵ depending only on the Dirichlet-Selberg domain D
defined from Lemmas 5.1 to 5.3, we are ready to define the set claimed at the beginning:

D(1) =
⋃
α

(
B

(1)
D (α, e−2ϵC−1r) ∩B(α, e−ϵr′)

)
.

As the first half of the proof of the main theorem, we will establish the uniform com-
pactness for balls centered in D(1)/ ∼.

Proof of Theorem 1.2, first half. We aim to prove that for every X̃ ∈ D(1)/ ∼, represented
by the point

X ∈
⋃
α

(
B

(1)
D (α, e−2ϵC−1r) ∩B(α, e−ϵr′)

)
,

the ball N(X̃, ϵ′/2) is compact. Specifically, we will show that for each such X̃ , the
preimage of N(X̃, ϵ′/2) is contained in the compact region⋃

α

(
B

(1)
D (α, r) ∩B(α, r′)\B(α, e−ϵ′bα(X))

)
.

Assume, by way of contradiction, that there exists a (piecewise smooth) curve γ in
D/ ∼ of length ≤ ϵ′/2, connecting X̃ and another point Ỹ , where Ỹ is represented by
Y ∈ Xn, and

Y /∈
⊔
α

(
B

(1)
D (α, r) ∩B(α, r′)

)
,

the disjointness is shown in Lemma 5.2. Up to a sufficiently small perturbation, we
further assume that the preimage of the curve γ does not meet any faces of codimen-
sion 2 or more, possibly except for the endpoints X and Y . Therefore, the preimage
is contained in a disjoint union of certain neighborhoods of Satake vertices α1,. . . , αN ,
consisting of a collection of segments glued together by the quotientmap. For any point
X̃i ∈ D/ ∼ where two pieces of the preimage are glued together, its preimage consists
of two points Xi ∼ X ′

i, paired by a certain facet-pairing transformation gi, in neighbor-
hoods of certain Satake vertices αki and αki−1

of type 1, respectively. We call Xi and X ′
i

a pair of glued points in γ.
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Consider the first intersection point of γ with the set

∂
⋃
α

(
B

(1)
D (α, r) ∩B(α, r′)

)
,

which we denote by Z̃, represented by Z ∈ D. The preimage of the curve connecting X̃

and Z̃ consists of segments (X0, X
′
1), (X1, X

′
2),. . . , (Xm−1, X

′
m), where Xi ∼ X ′

i are pairs
of glued points, and X = X0, Z = X ′

m for convenience. We analyze two cases for this
intersection point:

• The point Z lies on ∂B(α′, r′) for a certain Satake vertex α′ of type 1.
• The point Z lies on ∂B

(1)
Π′ (α′, r) for a certain Satake vertex α′ of type 1 and a

boundary componentΠ′ = span(Φ′), where Φ′ is a Satake face of type 2 contain-
ing α′.

Assume that the first case occurs. Lemma 5.2 implies that the preimage of the curve
restricted to B

(1)
D (α, r) ∩ B(α, r′) does not intersect any face not meeting α. Therefore,

for each pair of glued pointsXi ∼ X ′
i in the curve connecting X̃ and Z̃, Proposition 4.3

implies the equality
bαki

(Xi) = bαki−1
(X ′

i).

Combining this with the Lipschitz condition for Busemann-Selberg functions (Propo-
sition 3.2), we deduce that

bα′(Z) < eϵ
′
bα(X) < r′,

given that the segments in the preimage of the curve connecting X̃ and Z̃ have a total
length less than ϵ′. However, this contradicts the assumption Z ∈ ∂B(α′, r′).
Now assume that the second case occurs. Let (Π′, α′) = (Πkm−1 , αkm−1), and induc-

tively define that (Πki−1
, αki−1

) to be the pair of boundary component with Satake vertex
taken to (Πki , αki) by gi. Then αk0 = α, andΠk0 is one of the boundary components con-
taining α. Denote it by Π, the assumption implies

b
(1)
Π,α(X) ≤ e−2ϵC−1r, b

(1)
Π′,α′(X

′) = r.

LetΦki be the Satake face contained inΠki . SinceXi andX ′
i lie in the interior of facets of

D, gi.Φki−1
and Φki share at least a side. According to the choice of type-one Busemann-

Selberg functions, their values b(1)Πki−1
,αki−1

(X ′
i) and b

(1)
Πki

,αki
(Xi) differs by a constantmul-

tiplier≤ C. Combining this fact with the 1-Lipschitz condition for type-one Busemann-
Selberg functions (Proposition 3.2), there is a certain Xj such that

e−2ϵC−1r ≤ b
(1)
Πkj

,αkj
(Xj) ≤ e−ϵr.

The third assertion in Lemma 5.3 implies that for each α, the union⊔
Π∋α

B(α, r′)\B(1)
Π (α,C−1e−2ϵr)

is disjoint. The first assertion in Lemma 5.3 implies that the preimage of the curve from
X̃j to Z̃ restricted to the component for Π of the union above does not meet faces not
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incident with the two edges η and η′ inΠ. Moreover, the second assertion in Lemma 5.3
implies that balls centered at points in the cycle of Xj with radius ϵ′/2 are disjoint and
do not intersect facets that precisely incident with a different Satake line. Therefore,
along the preimage of the curve from X̃j to Z̃, the corresponding facet-pairing trans-
formations compose into a word w, which maps Πkj−1

to Πkm , ensuring that w.Φkj−1

and Φkm share at least a side. Consequently, the values b(1)Π′,α′(Z) is strictly less than r,
contradicting the assumption that Z lies on ∂B

(1)
Π′ (α′, r).

This completes the proof of the first half of Theorem 1.2. □

Remark 5.1. We can refine the construction by considering smaller neighborhoods of these
Satake vertices, still denoted byD(1), such that any pointsX,X ′ ∈ ∂D paired by a side pairing
transformation are either both included in or excluded from D(1).
5.2. Part II: Behavior Near Satake Faces of Type Two. We have derived a polytope
D′ = D\D(1) with unpaired boundary components that does not contain Satake ver-
tices of type 1, and contains only disjoint Satake faces of type 2. In this subsection, we
proceed to analyze the cycles of these type 2 Satake faces.

The first lemma in this subsection is parallel to Lemma 5.2 and proved similarly:
Lemma 5.4. Let Φi be a Satake face of D, and αΦi

be an interior point of span(Φi). Then, for
any r > 0, the closure B(αΦi

, r) ∩D′ contains a neighborhood of Φi in D′. Furthermore,
∞⋂

m=1

(
B(αΦi

, 1/m) ∩D′
)
= Φi ∩D′.

If the Satake face Φi is 2-dimensional, the proof requires us to decompose the set
B(αΦi

, r) ∩D′ into three mutually exclusive parts:
• Points contained in the δ-neighborhood of a face precisely incidentwith a vertex
of Φi at Πi,

• Points not of the previous type, while contained in the ϵ-neighborhood of a face
precisely incident with an edge of Φi at Πi, and

• All other points in B(αΦi
, r) ∩D′.

As shown in the following lemmas, we can choose certain constants ϵ, δ > 0 such that
the second part is a disjoint union corresponding to the edges of Φi.
Lemma 5.5. Let P1 and P2 be hyperplanes in X3 passing through I , and let the Riemannian
dihedral angle satisfy

0 < θ1 ≤ ∠I(P1, P2) ≤ θ2 < π.

Then for each δ > 0, there exists ϵ > 0 depending on δ, θ1 and θ2, such that
N(I, 1) ∩N(P1, ϵ) ∩N(P2, ϵ) ⊂ N(I, 1) ∩N(P1 ∩ P2, δ).

Here, N(P, r) denotes the r-neighborhood of P in X3.
Proof. Consider the space of all pairs of hyperplanes inX3 passing through I with topol-
ogy induced by their normal vectors. There exists a value ϵ satisfying the inclusion
condition, depending on the hyperplane pair (P1, P2).
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This defines a function on the space of hyperplane pairs, which is continuous and is
strictly positive whenever the dihedral angle ∠I(P1, P2) is bounded away from 0 and π.
Since the space of hyperplane pairs is compact, there exists a constant ϵ > 0 such that
the inclusion condition holds for all such pairs (P1, P2). □

Lemma 5.6. Let η and η′ be adjacent edges of the Satake face Φ, such that η ∩ η′ = α. Let F
and F ′ be faces ofD precisely incident with η and η′, respectively. Then there is a certain r > 0,
such that for every sufficiently small δ > 0, there is a certain ϵ > 0, satisfying

(B(αΦ, r) ∩ (F\N(G, δ))) ∩ (B(αΦ, r) ∩ (F ′\N(G, δ))) = ∅,

and are separated from each other by distance at least ϵ. Here, G = F ∩ F ′ if it is non-empty. If
F ∩ F ′ = ∅, G is an arbitrary face that is precisely incident with α.

Proof. Case (1). IfF∩F ′ = ∅, we haveF∩F ′∩B(αΦ, r) = α. For anyGprecisely incident
with α, Lemma 3.1 implies that the completion N(G, δ) contains a neighborhood of α
in D. Therefore,

F\N(G, δ) and F ′\N(G, δ)

does not meet in B(αΦ, r), making them of a positive distance away from each other.
Case (2). Suppose F ∩ F ′ is a face of D precisely incident with α at Π = span(Φ).

Without loss of generality, consider the case when F and F ′ are facets. According to
Proposition 4.5, the angle ∠X(F, F

′) satisfies
∠X(F, F

′) → ∠α(η, η
′) := θ ∈ (0, π),

as the base point X ∈ F ∩ F ′ is asymptotic to α. By Lemma 5.4, there exists r > 0 such
that

θ

2
≤ ∠X(F, F

′) ≤ θ + π

2
,

for all X ∈ F ∩ F ′ ∩B(αΦ, r).
NowfixX ∈ F∩F ′∩B(αΦ, r). There exists g ∈ SL(3,R) such that g.X = I . Moreover,

∠I(g.F, g.F
′) = ∠X(F, F

′) ∈
[
θ

2
,
θ + π

2

]
,

where span(g.F ) and span(g.F ′) are hyperplanes in X3 passing through I . By Lemma
5.5, there exists ϵ > 0 such that

N(I, 1) ∩N(g.F, ϵ) ∩N(g.F ′, ϵ) ⊂ N(I, 1) ∩N(g.F ∩ g.F ′, δ).

Pulling back by g−1:
N(X, 1) ∩N(F, ϵ) ∩N(F ′, ϵ) ⊂ N(X, 1) ∩N(F ∩ F ′, δ).

Since the number ϵ > 0 is independent of X , we apply this for all points X in X ∈
F ∩ F ′ ∩B(αΦ, r) and deduce

B(αΦ, r) ∩N(F ∩ F ′, 1) ∩N(F, ϵ) ∩N(F ′, ϵ) ⊂ N(F ∩ F ′, δ).

We claim that for any Y ∈ N(F, ϵ) and Y ′ ∈ N(F ′, ϵ) outside ofN(F ∩F ′, 1), the distance
d(Y, Y ′) ≥ 2ϵ as well. Assume this is not true, then for X ∈ F ∩ F ′ and lines s and s′:
[0, 1] → X3 fromX to Y and Y ′, the distance from s(t) to s′ strictly increases as t increases



BUSEMANN-SELBERG FUNCTIONS AND COMPLETENESS 35

from 0 to 1. However, when s(t) lies in N(F ∩ F ′, 1)\N(F ∩ F ′, δ + ϵ), its distance to s′

is at least 2ϵ, contradicting the assumption d(Y, Y ′) < 2ϵ.
Thus, we may eliminate N(F ∩ F ′, 1) from the inclusion above, yielding that

B(αΦ, r) ∩ (F\N(F ∩ F ′, δ)) and B(αΦ, r) ∩ (F ′\N(F ∩ F ′, δ))

are separated by distance at least ϵ. □

For each two-dimensional Satake face Φ and one-dimensional Satake edge η in D′,
Proposition 4.3 provides fixed points αΦ and αη under the corresponding Satake cycles.
Moreover, we may choose these points and their Busemann-Selberg functions so that,
whenever Φj = w.Φi for some word w in the cycle [Φ], one has

αΦj
= w.αΦi

and bαΦi
(Y ) = bαΦj

(w.Y ), ∀Y ∈ X3,

and similarly for Satake edge and vertex cycles in D′. We will show that there is r > 0
so that

D(2) =
⋃
Π

B(αΦΠ
, r)

is a disjoint union (indexed by the maximal Satake faces ΦΠ lying in each boundary
component Π) and that balls in D(2)/ ∼ of a uniform radius are compact.

Proof of Theorem 1.2, second half. Step (1). By the discussion following Lemma 5.2 and
since there are finitely many Satake vertices in D′, we can choose δ > 0 and r′ > 0 such
that

D(2),0 =
⊔
α

(
B(α, r′) ∩

⋃
Fα

N(Fα, δ)

)
is a disjoint union (over the Satake verticesα), and remains so if δ is replaced by 2δ. Here
Fα ranges over faces precisely incidentwithα, and each componentB(α, r′)∩⋃F N(F, δ)
meets no faces not incident with its α. By Proposition 4.3, bα is invariant under the
Satake cycle of α, and one shows exactly as in the classical hyperbolic case that balls of
radius δ in in D(2),0/ ∼ are compact.
Step (2). If α, α′ lie in the interior of the same boundary component Π, then

C−1bα′ < bα < Cbα′ ,

for some C > 1. Using Lemma 5.6, we choose ϵ and r′′ > 0 so that

D(2),1 =
⊔
η

B(αη, r
′′) ∩

⋃
Fη

N(Fη, ϵ)\D(2),0

 ,

is a disjoint union (over Satake edges η), remains so if ϵ is replaced by 2ϵ, and each
component does not meet faces not incident with its η. Again, its image in the quotient
has compact ϵ-balls.
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Step (3). By the same comparability argument, there is r′′′ > 0 so that

D(2),2 =
⊔
Φ

(
B(αΦ, r

′′′) ∩
⋃
FΦ

N(FΦ, ϵ)\
(
D(2),0 ∪D(2),1

))
,

is a disjoint union and each component meets only faces incident with its Φ. For some
ϵ′ > 0, balls of radius ϵ′ in D(2),2/ ∼ are compact.
Finally, the compacrability argument allows us to choose r > 0 small enough ensur-

ing
D(2) =

⋃
Π

B(αΦΠ
, r) ⊂ D(2),0 ∪D(2),1 ∪D(2),2,

soD(2) is a disjoint union with uniformly compact balls in the quotient, completing the
proof. □

Combining the constructions of Subsections 5.1 and 5.2 yields the full proof of The-
orem 1.2.

6. Examples of a Dirichlet-Selberg Domain

In this section we exhibit explicit finite-volume, complete X3-orbifolds by gluing to-
gether certain Dirichlet-Selberg domains along facets.

Example 6.1. Let D ⊂ X3 be the projective 5-simplex whose six vertices lie on the Satake
boundary and are given by the rank-one matrices

α1,2 =

 1 ±1 0
±1 1 0
0 0 0

 , α3,4 =

 1 0 ±1
0 0 0
±1 0 1

 , α5,6 =

 0 0 0
0 1 ±1
0 ±1 1

 .

Equivalently, under the identification of type-one component of ∂SX3 with RP2, these corre-
spond to α1,2 = [1 : ±1 : 0], α3,4 = [1 : 0 : ±1], α5,6 = [0 : 1 : ±1]. Label the unique facet of D
missing αi by Fi, for i = 1, . . . , 6.

Define three elements of SL(3,R),

a =

 1
2

1
2

0
1
2

−1
2

1
1
2

−1
2

−1

 , b =

 −1
2

1 1
2

−1
2

−1 1
2

1
2

0 1
2

 , c =

 −1 1
2

−1
2

0 1
2

1
2

1 1
2

−1
2

 ,

and set Γ0 = {a, b, c, a−1, b−1, c−1}. One checks that

a.F6 = F1, b.F2 = F3, c.F4 = F5,

and that each facet Fi lies in the bisector Bis(I, gi.I) for the corresponding generator gi ∈ Γ0.
Hence D is the Dirichlet-Selberg domain

D = DS(I,Γ0) ⊂ X3.
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The 15 ridges rij = Fi ∩ Fj (for 1 ≤ i < j ≤ 6) break into five cycles under the action of Γ0:

r56
a−→ r12

b−→ r34
c−→ r56,

r14
a−1

−−→ r36
b−1

−−→ r25
c−1

−−→ r14,

r26
a−→ r16

a−→ r13
b−1

−−→ r26,

r24
b−→ r23

b−→ r35
c−1

−−→ r24,

r46
c−→ r45

c−→ r15
a−1

−−→ r46.

By direct computation of the invariant angle functionDu24 one finds, for the first cycle, θinv(r12) =
θinv(r34) = θinv(r56) =

2π
3
, whence the total angle sum is 2π. For each of the remaining four cy-

cles the sum of the (Riemannian) dihedral angles is π. ThusD satisfies the angle-sum condition
for Dirichlet-Selberg domains.

Consequently, gluing the facets of D via the identifications in Γ0 produces a complete, finite-
volume X3-orbifold M = D/ ∼.

By Theorem 1.2, the orbifold M of Example 6.1 is complete. Hence, Poincaré’s Fun-
damental Polyhedron Theorem yields the following presentation of its fundamental
group.

Corollary 6.1. Let

a =

 1
2

1
2

0
1
2

−1
2

1
1
2

−1
2

−1

 , b =

 −1
2

1 1
2

−1
2

−1 1
2

1
2

0 1
2

 ,

and let Γ = ⟨a, b⟩. Then Γ is a lattice in SL(3,R) with presentation
Γ = ⟨a, b|(aba−1b−1)2, (ababa)2, (a2b−1)2, (ab3)2⟩.

Since non-uniform lattices in SL(3,R) are quasi-isometric to SL(3,R) itselfBH13, the
group Γ above is not Gromov-hyperbolic.

Next we describe the thin part of M = X3/Γ, known to be a union of cuspidal ends
or cornersBS73. Each vertex αi of D determines a one-dimensional subspace of R3, and
these subspaces span 18 full flags, corresponding to 1-simplices or Weyl chambers in
the visual boundary ∂∞X3. These flags break into three equivalent Γ0-orbits, and we
may focus on the one containing the flag

V• = span(e1 + e3) ⊂ span(e1 + e2, e1 + e3) ⊂ R3.

The associated minimal parabolic subgroup P = PV• can be read off from the face-
pairing data. Computation suggests that its unipotent radical P0 is torsion-free, satis-
fying P/P0

∼= (Z/2Z)2. We further find generators

u =

 1 1 −1
0 0 1
0 −1 2

 , v =

 0 0 −1
−1 1 −1
1 0 2

 , w =

 0 0 −1
1 1 1
1 0 2

 ,



38 YUKUN DU

and a presentation
P0 = ⟨u, v, w | [u,w], [v, w], [u, v]w−2⟩,

so P0
∼= π1(T

2⋊φS
1), the fundamental group of themapping torus of φ = ( 1 2

0 1 ). Hence,
each minimal-parabolic cuspidal end ofM is homeomorphic to

R2
+ × ((T2 ⋊φ S1)/K4).

Remark 6.1. By Selberg’s Lemma,M admits finite-degree manifold covers. One such example
arises from the surjective reduction modulo 3:

ρ : Γ ↪→ SL(3,Z[1
2
]) → SL(3,Z/3Z).

Let H be a subgroup of SL(3,Z/3Z) with order 39, for instance,

h1 =

 0 2 0
0 1 2
1 0 1

 , h2 =

 1 2 1
0 1 1
0 0 1

 , H = ⟨h1, h2⟩ ∼= C13 ⋊ C3.

Then, the preimage Γ1 = ρ−1(H) is torsion-free, and [Γ : Γ1] = [SL(3,Z/3Z) : H] = 144. It
remains an interesting question whether M admits a smaller-degree manifold cover.

Example 6.2. As another example, consider the congruence subgroup

Γ = Γ′
3(2) = {g = (gij)

3
i,j=1 ∈ SL(3,Z) | gii ≡ 1 (mod 4), gij ≡ 0 (mod 2), ∀i ̸= j}.

This group is generated by the matrices aij = I+2ei⊗ej for 1 ≤ i ̸= j ≤ 3; seeMen65;BLS64. Ap-
plying the algorithm developed inKap23;Du24, together with Theorem 1.2, we find that the Dirich-
let–Selberg domain D = DS(I,Γ) is a convex polytope with 13 type-one Satake vertices:

[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : ±1 : 0], [1 : 0 : ±1], [0 : 1,±1], and [1 : ±1 : ±1].

The domainD has 24 facets, each lying in a bisector of the form Bis(I, a±ij.I) or Bis(I, a±jia±ki.I).
These facets intersect in 84 ridges, which organize into 25 ridge cycles. Tracing the group ele-
ments along these ridge cycles produces the following relators for Γ′

3(2):
• 21 cycles of angle sum 2π:

– 12 cycles involve facet–pairings of the form a±jia
±
ki, yielding the commuting rela-

tions [aji, aki] = e.
– 3 cycles yielding the commuting relations [aij, aik] = e.
– 6 cycles giving the Heisenberg-type relations [aij, ajk] = a2ik.

• 4 cycles of angle sum π, all of which produce relations equivalent to that

(a12a
−1
13 a23a

−1
21 a31a

−1
32 )

2 = e.

Hence one obtains the presentation

Γ′
3(2) = ⟨aij | [aij, aik], [aji, aki], [aij, ajk]a−2

ik , (a12a
−1
13 a23a

−1
21 a31a

−1
32 )

2⟩.
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7. Future Directions

Most of our constructions and results have been developed in the setting of the sym-
metric space Xn, but our proof of Theorem 1.2 was carried out in detail only for X3.
We expect that the same arguments extend to arbitrary Xn with help of the combina-
toric structure of finite-volumeDirichlet-Selberg domains and properties of Busemann-
Selberg functions.

A second,more ambitious direction is to remove the finite-volume condition. Infinite-
volume Dirichlet-Selberg domains arise from amuch larger class of discrete subgroups
of SL(n,R), notably including various hyperbolic subgroups (e.g. surface group and
knot group representations into SL(n,R)LRT11;LR11. Two new obstacles appear:

• Infinite-volume polytopes admit infinitely many nonempty Satake boundary
components (cf. Corollary 3.1). By Proposition 4.1, a given horoball based
at a type-one component meets infinitely many higher-type components, so
one cannot trim away all “higher-type intersections” using only finitely many
higher-type horoballs.

• As one approaches the Satake boundary inside an infinite-volume polyhedron,
some Riemannian dihedral angles may tend to 0 or π (cf. Lemma 4.2). There-
fore we lose the face-separation argument of Lemma 5.6, and would need new
methods to prove the uniform compactness of balls, especially by exploiting the
angle-sum condition.

Overcoming these issues - perhaps with additional techniques - could lead to a com-
plete extension of our main theorem to the infinite-volume scenario.

Appendix A. An Inequality for Interlaced Sequence Deviations

Lemma A.1. Let n and k be positive integers with k < n. Suppose
a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn−k

are real numbers satisfying the interlacing condition,
ai ≥ bi ≥ ai+k, i = 1, . . . , n− k.

Define the averages ā = 1
n

∑
ai and b̄ = 1

n−k

∑
bi. Then,

n∑
i=1

(ai − ā)2 ≥
n−k∑
i=1

(bi − b̄)2.

Proof. We proceed by induction on k. The base case k = 1 asserts that
a1 ≥ b1 ≥ a2 ≥ · · · ≥ bn−1 ≥ an.

Fix such an interlacing (ai) and (bi). Since the squareddeviation (b1, . . . , bn−1) 7→
∑n−1

i=1 (bi−
b̄)2 is convex, its restriction to [a2, a1]× · · · × [an−1, an] attains the maximum at a certain
corner. Furthermore, the maximum is attained when the numbers bi are pairwise dis-
tinct. Hence up to reordering, {b1, . . . , bn−1} must equal {a1, . . . , an} \ {aj} for some
1 ≤ j ≤ n.
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A direct calculation then shows
n∑

i=1

(ai − ā)2 −
∑
i ̸=j

(
ai −

∑
i ̸=j ai

n− 1

)2

=
n− 2

n− 1
(aj − ā)2 ≥ 0,

which establishes the case k = 1.
For general k, one has a refined sequence {b′1, . . . , b′n−k+1} satisfying bi−1 ≥ b′i ≥ bi and

ai ≥ b′i ≥ ai+k−1. Applying the induction assumption to {ai} and {b′i} yields the desired
inequality. □

Appendix B. An Analytic Criterion for Finite Volume

Definition 3.5 is indeed equivalent to the actual finite-volume condition:

Proposition B.1. Let D ⊂ P(Symn(R)) be a finitely-sided projective convex polytope, and
D ⊂ Xn,proj be its restriction to Xn. Then D has finite Riemannian volume in Xn if and only if
D ⊂ Xn.

Proof. We describe the Riemannian volume form on Xn by the standard projective vol-
ume form (see e.g.Ebe96):

dµ(xij) =
ιE
∧

i≤j dxij

(det(xij))(n+1)/2
, E =

∑
i≤j

xij
∂

∂xij

.

Necessity. If D ̸⊂ Xn, then there is a boundary point X0 ∈ ∂SD with detX0 = 0 and a
small projective-neighborhood U ∋ X0, U ⊂ D. On U ∩ ∂SXn the denominator detX
vanishes to first order, so

∫
U∩Xn

dµ = ∞. Hence D cannot have finite volume.
Sufficiency. Conversely, assume D ⊂ Xn. We show each boundary neighborhood

contributes a finite amount to the volume integral; compact interior patches are mani-
festly finite.

Fix a boundary stratum of type n− k. After conjugating, we may take

X0 = diag(Ik, O), k < n.

Introduce homogeneous coordinates near X0:

X = X0 +

(
A B
BT C

)
, A ∈ Symk(R), tr(A) = 0, B ∈ Mk,n−k(R), C ∈ Symn−k(R).

Positivity of X forces C to lie in a convex polytope of the projective cone. Writing C =
t Y with t ≥ 0 and Y ∈ Xn−k, then Y ∈ D0 ⊂ Xn−k. For fixed Y ∈ D0, positive-
definiteness along with the polyhedral property together show that entries in B are
O(t), therefore det(X) = tn−k det(Y ) +O(tn−k+1). By the compactness of D0 one has

det(X) ≥ 1

2
tn−k det(Y ),

in a sufficiently small neighborhood.
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The volume form factorizes (up to a bounded Jacobian) as

ιE
∧

dxij ≈
(
ι
∧

dA
)(∧

dB
)(∧

dC
)
.

For fixed C, the positive-definiteness show that∫ ∧
dB ≤ 2k(n−k)(det(C))k/2 = 2k(n−k)(det(Y ))k/2tk(n−k)/2.

For fixed t, B = O(t),
∫ ∧

dB = O(tk(n−k)), thus one estimates∫ ∧
dB ≤ K(det(Y ))k/2tk(n−k), K < ∞.

Meanwhile, C = tY contributes∧
dC = t(n−k−1)(n−k+2)/2dt ∧

(
ιE

∧
j≥i≥k+1

dyij

)
, E =

∑
i≤j

yij
∂

∂yij
.

Hence the singularity near X is integrable:∫
Uϵ

dµ =

∫
Uϵ

ιE
∧

dxij

det(X)(n+1)/2
≤
∫
Uϵ

2(n+1)/2ιE
∧
dxij

det(tY )(n+1)/2

=

∫
|xij |<ϵ

ι
∧

dA

∫ ∧
dB

∫ ϵ

0

dt

∫
D0

2(n+1)/2t(n−k−1)(n−k+2)/2ιE
∧

i≤j dyij

det(tY )(n+1)/2

≤ (2ϵ)(k−1)(k+2)/2

∫ ϵ

0

dt

∫
D0

K(det(Y ))k/2tk(n−k)
2(n+1)/2t(n−k−1)(n−k+2)/2ιE

∧
i≤j dyij

det(tY )(n+1)/2

= K ′ϵ(k−1)(k+2)/2

∫ ϵ

0

dt

∫
D0

tk(n−k)/2−1ιE
∧

i≤j dyij

det(Y )(n−k+1)/2

=
K ′ϵk(n+1)−1

k(n− k)
Vol(D0) < ∞,

using the induction assumption for Xn−k. CoveringD by finitely many such boundary
charts plus an interior compact set shows

∫
D
dµ < ∞. □
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