Study Guide for Real Analysis Exam

Undergraduate Analysis

Continuity and differentiation in one real variable

Metric spaces and compactness in analysis

Sequences and series

Uniform convergence and uniform continuity

Taylor's theorem

Weierstrass approximation theorem

References: [2] Chapters 2, 3, 4, 5, 7; [1] Sections 0.6.

Measure and Integration

Measures on \mathbb{R}^n and on σ -algebras

Measurable and integrable functions

 ${\it Convergence theorems:} \ \textit{Fatou's lemma, the monotone and dominated convergence}$

theorems and Egoroff's theorem

Notions of convergence: uniform, pointwise, almost everywhere, and in norm

Fubini and Tonelli theorems

References: [1] Chapters 1, 2; [3] Chapters 1, 2, 6.

Function Spaces

The Banach spaces L^1 and L^{∞} :

Completeness

Convolutions and approximations to the identity

Linear functionals and realizing L^{∞} as the dual of L^{1}

Hilbert space and L^2 spaces:

Schwarz inequality and orthogonality

Linear functionals and the Riesz representation theorem

Bessel's inequality, orthonormal basis, and Parseval's identity

Trigonometric series: trigonometric polymonials are dense in both C([0,1]) (with respect to the uniform metric) and in $L^2([0,1])$

References: [1] Sections 5.2, 5.5, 6.2; [3] Chapter 4.

References

- [1] G. B. Folland, Real Analysis, 2nd edition, John Wiley & Sons, Inc.
- [2] W. Rudin, Principles of Mathematical Analysis, 3rd edition, Macmillan.
- [3] E. M. Stein and R. Shakarchi, Real Analysis, Princeton University Press.

[Reviewed with no changes November 2022]