By providing my signature below I acknowledge that I abide by the University's academic honesty policy. This is my work, and I did not get any help from anyone else during the exam:

Name (sign):
Student Number:
Instructor's Name: \qquad

Name (print): \qquad

Class Time:

- If you need extra space use the last page.
- Please show your work. An unjustified answer may receive little or no credit.
- If you make use of a theorem to justify a conclusion then state the theorem used by name.
- Your work must be neat. If I can't read it (or can't find it), I can't grade it.
- The total number of possible points that is assigned for each problem is shown here. The number of points for each subproblem is shown within the exam.
- Please turn off your mobile phone.
- A calculator is not necessary, but numerical answers should be given in a form that can be directly entered into a calculator.
- Common identities:

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \\
\sin (\alpha+\beta) & =\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)
\end{aligned}
$$

1. [2 Bonus] Common Knowledge: Who is the better sprinter Elisa Balsamo, Charlotte Kool, or Lorena Wiebes?
2. Determine all of the values of x for each question below that satisfy the given equation. If no values of x satisfy the equation provide a brief justification as to how you arrived at your conclusion.
(a) $[5 \mathrm{pts}] \ln (x-1)=3$.
(b) $[5 \mathrm{pts}] \quad e^{4 x+1}=8$.
\qquad
(c) [5 pts] $\ln (x)+\ln (x+1)=2$.
(d) $[6 \mathrm{pts}] 3 \cdot 8^{2 x+1}=14 \cdot 6^{1-x}$.
3. The questions below refer to the function,

$$
R a(x)=\ln (x+1)+2 .
$$

(a) [6 pts] Use the axes below to draw a sketch of the graph of $R a(x)$. Also, state the domain and range of the function.

(b) [6 pts] Show that the function $\operatorname{Ra}(x)$ is one-to-one.
(c) $[6 \mathrm{pts}]$ Determine the inverse of the function $R a(x)$.
4. The function $K r(x)$ is defined by

$$
K r(x)=3+C \cdot e^{r x}
$$

It is known that $\operatorname{Kr}(0)=2.1$ and $\operatorname{Kr}(10)=2.9$.
(a) $[6 \mathrm{pts}]$ Determine the values of the constants C and r.
(b) [6 pts] What is the value of $\operatorname{Kr}(100)$? What value does the function get close to as x gets very large?
(c) [6 pts] What is the value of x when $\operatorname{Kr}(x)=2.99$?
5. For each of the following expressions, simplify as indicated.
(a) [5 pts] Write the following as a single exponential:

$$
\left(\frac{e^{2 x+2}}{e^{4 x-1}} e^{x^{2}}\right)^{3}
$$

(b) [5 pts] Write the following as a single logarithm:

$$
\frac{1}{2} \ln (3 x+1)-7 \ln (1-x)+1
$$

6. Given the approximations below determine approximations for each of the expressions that follow,

$$
\log _{b}(3) \approx 0.458, \quad \log _{b}(4) \approx 0.578, \quad \log _{b}(20) \approx 1.249
$$

(a) $[6 \mathrm{pts}] \log _{b}(12)$.
(b) $[6 \mathrm{pts}] \log _{b}(5)$.
(c) $[6 \mathrm{pts}] \log _{b}(2)$.
7. A bank offers different accounts with interest rates that are compounded monthly.
(a) [5 pts] One account offers an interest rate of 1.3% compounded monthly. If the initial principal is $\$ 10,000$ what will the balance be after four years?
(b) [5 pts] Another account offers an interest rate of 1.1% compounded monthly. How long will it take to double the initial balance?
(c) [5 pts] A customer deposited $\$ 20,000$ into an account whose interest was compounded monthly and forgot about it. After thirty years the balance on the account was $\$ 34,000$. What was the interest rate on the account?
\qquad

Extra space for work. Do not detach this page. If you want us to consider the work on this page you should print your name, instructor and class meeting time below.

Name (print): \qquad Instructor (print): \qquad Time: \qquad

