Student id: \qquad
DATE: \qquad I__

FALL 2023
\qquad

INSTRUCTOR: \qquad SECTION: \qquad

№	SCORE	MAX
1		30
2		5
3		5
4		5
5		5
6		5
7		5
8		5
9		5
10		5
11		5
12		5
13		5
14		5
15		5
16		5
17		10
18		10
19		10
20		10
21		10
22		10
23		10
24		10
25		10
26		10
27		10
28		10
29		10
30		10
TOTAL		245

INSTRUCTIONS

- This is a set of practice problems that can be used to review for the final exam. The real exam follows the same format, but is shorter.
- The exam has two parts: the first one consists of Multiple Choice (MC) questions, and the second part of Free Response (FR) ones. You must show work for both parts. An unjustified answer will receive no credit. If you are using a shortcut, explain it.
- Please show your work in a neat and organized manner. Circle the answer for MC questions and put a box around the final answer for the FR questions.
- Smart devices (including smart watches and cell phones) are not allowed and may not be on your person.
- You do not need a calculator; answers containing symbolic expressions such as $\cos (\pi / 3)$ and $\ln \left(e^{4}\right)$ are acceptable. Include an exact answer for each problem.
- If you plan to use a calculator, you are only allowed to use a TI-30XS Multiview calculator; the name must match exactly. No other calculators or sharing of calculators is allowed.

Part I: Multiple Choice

Show your work and circle your answer.

1. [30 pts] Find the following limits. If they do not exist, choose DNE.
(a) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\cos (x)+\cos (2 x)}=0$
(A) DNE
(C) 3
(E) -3
(10) 0
(D) -1
(b) $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-5 x+6}{x-2}$
(A) DNE
(B) 0
(8/4) -1
(E) 4
(D) 1
$=\lim _{x \rightarrow 2^{-}} \frac{(x-2)(x-3)}{(x-2)}$
$=\lim _{x \rightarrow 2^{-}}(x-3)$

$$
=-1 /
$$

(c) $\lim _{x \rightarrow 4} \frac{\sin (x-4)}{\tan \left(x^{2}-16\right)}$
(A) DNE
$\frac{1}{8}$
(E) $\frac{1}{32}$
(B) 0
(D) $\frac{1}{16}$

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
0
\end{array} \lim _{x \rightarrow 4} \frac{i \sin (x-4)!}{i(x-4)!i\left(x^{2}-16\right)!} \cos \left(x^{2}-16\right)(x-4)\right.} \\
& =\lim _{x \rightarrow 4} \frac{\left(x^{2}-16\right)}{(x-4)!(x+4)) \rightarrow 8} \\
& =\frac{\cos \left(x^{2}-16\right)(x-4)}{(x-4)} \\
& =\frac{1}{8} / l
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 4} \underbrace{}_{\underbrace{2 x}_{8} \overbrace{\underbrace{}_{1}}^{\sec ^{2}\left(x^{2}-16\right)}} \\
& =1 / 8
\end{aligned}
$$

(d) $\lim _{h \rightarrow 0} \frac{\sin (\pi+h)-\sin (\pi)}{h}$

$$
\begin{aligned}
& \text { (A) } \mathrm{DNE} \\
& =\left.(\sin x)^{\prime}\right|_{x=\pi} 1 \\
& =\left.\cos x\right|_{x=\pi} \\
& =-1
\end{aligned}
$$

pTs (e) $\lim _{x \rightarrow 0^{+}}(x+\pi / x)^{\pi x}$
(A) $-\infty$
(E) DNE
(B) 0
(D) ∞

$$
[\infty] \text { indterminate } e^{=} \lim _{x \rightarrow 0^{+}} \overbrace{\pi}^{\rightarrow 0} \cdot \overbrace{\ln \left(x+\frac{\pi}{x}\right)}^{\infty}
$$

$$
=e^{0}
$$

$$
=1 / /
$$

$$
\begin{aligned}
& {\left[\frac{\infty}{\infty}\right] L H /=e \lim _{x \rightarrow 0^{+}} \frac{\left(1-\pi / x^{2}\right) /\left(x+\frac{\pi}{x}\right)}{-1 / \pi x^{2}}} \\
& =e^{\lim _{x \rightarrow 0^{+}} \underbrace{\frac{-\pi x^{2}+\pi^{2}}{x+\frac{\pi}{x}}} \underbrace{\pi^{2}}}
\end{aligned}
$$

(f) $\lim _{x \rightarrow+\infty} \sqrt{x^{2}-x}-x$
(A) $-\infty$
(D) 0
(G) DNE
(B) -1
(E) $\frac{1}{2}$
(8.) $-\frac{1}{2}$
(F) ∞
$[\infty-\infty]$ indeterminate $\lim _{x \rightarrow \infty} \sqrt{x^{2}-x}-x \cdot \frac{\left(\sqrt{x^{2}-x}+x\right)}{\left(\sqrt{x^{2}-x}+x\right)}$

$$
=\lim _{x \rightarrow \infty} \frac{x^{2}-x-x^{2}}{\sqrt{x^{2}-x}+x}
$$

$$
=\lim _{x \rightarrow \infty} \frac{\left.\frac{x}{x(\sqrt{1-1 / x}+1}\right)}{\text { Since } x \text { is positive }} 2 \text { as } x \rightarrow \infty
$$

$$
=-\frac{1}{2} / /
$$

2. [5 pts] Assume that $x=a$ is a vertical asymptote of $y=\frac{x^{2}-25}{(x-2)\left(x^{2}-9 x+20\right)}$. Find the sum of all possible values of a :
(A) -5
(C) 5
(E) 10
(4) 6
(D) 8

$$
y=\frac{(x-5)(x+5)}{(x-2)(x-5)(x-4)}
$$

Candidates for vertical asymptotes: $x=2, x=5, x=4$.

- $\lim _{x \rightarrow 2^{-}} \frac{(x-5)(x+5)}{(x-2)(x-5)(x-4)} \stackrel{\left[\begin{array}{c}2 \\ \hline\end{array}\right]}{=} \quad \therefore \quad x=2$ is a vesical asymptote of y.
 (y has a hole at $x=5$)
- $\lim _{x \rightarrow 4^{-}} \frac{(x-5)(x+5)}{(x-2)(x-5)(x-4)}=-\infty \quad \therefore \quad x=4 \quad$ is a vertical asymptote of y.

Shower: $2+4=6$
3. [5 pts] The graph of $y=\frac{x-5}{x^{2}-7 x+a}$ has a vertical asymptote and a removable discontinuity. What is the value of a ?
(A) 0
(D) 7
(B) 3

10
(F) There is not enough information to deter-
(C) 5 mine a

For the graph to have a removable discontinuity, $(x-5)$ has to be one of the factors of $x^{2}-7 x+a$.
In order for the linear factors to add up to $-7 x$, the other factor has to be $(x-2)$.
Since a is the product of the constant terns, $a=(-5)(-2)=10$.
___ris 4. [5 pts] Given the values of $f(x)$ and $f^{\prime}(x)$ in the table below, and given that

$$
g(x)=\frac{f(2 x)}{f(x)}
$$

find $g^{\prime}(1)$.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	-1	$1 / 2$
2	2	3
3	-3	$1 / 3$
4	4	$3 / 2$

$$
\begin{aligned}
& \text { (A) }-28 \\
& \text { (C) }-6 \\
& \text { (E) }-4 \\
& \text { (18) }-7 \\
& \text { (D) }-5 \\
& \text { (F) } \frac{3}{2} \\
& g^{\prime}(x)=\frac{f(x) \cdot f^{\prime}(2 x) \cdot 2-f(2 x) \cdot f^{\prime}(x)}{(f(x))^{2}} \\
& g^{\prime}(1)=\frac{f(1) \cdot f^{\prime}(2) \cdot 2^{3}-f(2) \cdot f^{\prime \prime}(1)}{(f(1))^{2}} \\
& =-7 /
\end{aligned}
$$

\qquad 5. [5 pts] At which point on the graph of $y(x)$, given below, are $y^{\prime}(x)$ and $y^{\prime \prime}(x)$ both negative?

(A) A
(C) C
(E) E
(44.4) B
(D) D
$y^{\prime}<\rho$ at B and C
At B, y^{\prime} is decreasing $\Leftrightarrow y^{\prime \prime}<0$
At c, y^{\prime} is increasing $\Leftrightarrow y^{\prime \prime}>0$
Thus, y^{\prime} and $y^{\prime \prime}$ are bath negative at B.
\qquad 6. [5 pts] The functions f, f^{\prime} and $f^{\prime \prime}$ are graphed below:

Which of the following statements is true?
(A) f is full, f^{\prime} is dashed
(D) f is dashed, f^{\prime} is dotted
(B) f is full, f^{\prime} is dotted
(80) f is dashed, f^{\prime} is full
(E) f is dotted, f^{\prime} is dashed
___m 7. [5 pts] (Fall 2017) Find ALL the horizontal asymptotes of the function $y=\frac{7|x|-3}{4 x-12}$. If there aren't any, write DNE.
(A) DNE
(C) $y=\frac{7}{4}$
(E) $y=0$
(B) $y=\frac{7}{4}$ and $y=-\frac{7}{4}$
(D) $y=-\frac{7}{4}$
$\lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty} \frac{7 x}{4 x}=\frac{7}{4}$
$\lim _{x \rightarrow-\infty} y=\lim _{x \rightarrow-\infty}-\frac{7 x}{4 x}=\frac{-7}{4}$
$\therefore y$ has two horizontal asymptotes: $y=\frac{7}{4}$ and $y=-\frac{7}{4}$.
8. [5 pts] Let $f(x)=3^{\frac{x^{2}-9}{x-5}}$. At which values) of x does this function have a local maximum?
(A) $x=0$
(C) $x=9$
(E) None of these
(4) $x=1$
(D) $x=1$ and $x=9$

$$
\begin{aligned}
& \operatorname{dom} f(x)=\mathbb{R} \backslash\{5\} \\
& \begin{aligned}
f^{\prime}(x) & =\frac{2 x(x-5)-\left(x^{2}-9\right)}{(x-5)^{2}} \cdot \ln 3 \cdot 3^{\frac{x^{2}-9}{x-5}} \\
& =\frac{x^{2}-10 x+9}{(x-5)^{2}} \cdot{\ln 3 \cdot 3^{\frac{x^{2}-9}{x-5}}}_{\text {always }>0}^{x^{2}-10 x+9=0 \Leftrightarrow x=}
\end{aligned} \ggg \gg \sqrt{\frac{1}{5}}(x-5)^{2}=0 \Leftrightarrow
\end{aligned}
$$

x	1	5	9
$\operatorname{sign}_{f_{1}}$ of	$\prod_{0}^{1}-\frac{1}{0}+$		
local			
maximum			
local			
minimum			

9. [5 pts] What is the absolute maximum of the function $f(x)=5-2|x-1|$ on $[-1,2]$?
(A) 1
(C) 3
(E) 5
(B) 2
(D) 4

$$
f(x)= \begin{cases}-2 x+7, & x \in[1,2] \\ 2 x+3, & x \in[-1,1)\end{cases}
$$

$$
f^{\prime}(x)=\left\{\begin{array}{cll}
-2 & , & x \in(1,2) \\
2 & , & x \in(-1,1)
\end{array}\right.
$$

No critical values outside $x=1$.

$$
\begin{aligned}
& f(1)=5 \\
& f(-1)=1 \\
& f(2)=3
\end{aligned}
$$

$\therefore f(x)$ achieves an absolute maximum sale of 5 at $x=1$.
10. [5 pts] Find the slope of the line tangent to the graph of

$$
3 x^{2}+2 x y+y^{2}=2 \quad[*]
$$

at $x=1$.
(A) -2
(C) 2
not defined
(B) 0
(D) 4

Differentiating both sides of $[*]$ with respect to x :

$$
6 x+2 x y^{\prime}+2 y+2 y y^{\prime}=0 \quad[* *]
$$

. At $x=1,[*]$ is:

$$
\begin{aligned}
& 3+2 y+y^{2}=2 \\
\Leftrightarrow & y^{2}+2 y+1=0 \\
\Leftrightarrow & (y+1)^{2}=0 \Rightarrow y=-1
\end{aligned}
$$

- At $(1,-1),[* *]$ becomes:

$$
\begin{aligned}
& 6+2 y^{\prime}-2-2 y^{\prime}=0 \\
& 4=0 \text { impossible! }
\end{aligned}
$$

\therefore therefore the slope of the tangent line to $[*]$ is undefined.
\qquad
PTS
11. [5 pts] What is the absolute maximum of the function

$$
f(x)= \begin{cases}-x & \text { if } x \in[-1,0] \\ x-x^{2} / 4 & \text { if } x \in(0,3] ?\end{cases}
$$

(A) 0
(C) $\frac{3}{2}$
(E) $\frac{5}{2}$
(4) 1
(D) 2
$f^{\prime}(x)=\left\{\begin{array}{cl}-1, & x \in[-1,0) \\ 1-\frac{x}{2}, & x \in(0,3]\end{array}\right.$
critical values: $x=0$ and $x=2$

$$
f(-1)=1
$$

$$
f(0)=0
$$

$$
f(2)=1
$$

$$
f(3)=3 / 4
$$

Therefore, $f(x)$ achieves an absolute maximum of 1 at $x=-1$ and $x=2$.
12. [5 pts] Compute $\int_{0}^{8} 3 x^{2}-4 x+\frac{x^{\frac{1}{3}}}{6} d x$.
(A) 324
(C) 400
(E) 898
(8) 386
(D) 450

$$
\begin{aligned}
& =\frac{3 x^{3}}{3}-\frac{4 x^{2}}{2}+\left.\frac{1}{6} \cdot \frac{3}{4} x^{4 / 3}\right|_{0} ^{8} \\
& =\left[8^{3}-2 \cdot 8^{2}+\frac{1}{8} \sqrt[3]{8^{4}}\right]-[0] \\
& =\left[8 \cdot 8^{2}-2 \cdot 8^{2}+\frac{1}{8} \cdot 8 \sqrt[3]{8}\right] \\
& =6 \cdot 8^{2}+2 \\
& =386
\end{aligned}
$$

prs 13. [5 pts] Compute $\int_{-1}^{2} 2 f(x)+1 d x$ where the graph of f is given below.

(A) 11
(C) 13
(E) 23
(B) 12
(D) 22
$\because 25$
14. [5 pts] Using the properties of the definite integral find the value of $\int_{1}^{5} f(x) d x$ if it is known that $\int_{1}^{6} f(x) d x=4, \int_{5}^{6} f(x) d x=1$.
(A) 1
(14) 3
(E) 5
(B) 2
(D) 4

$$
\begin{aligned}
\int_{1}^{5} f(x) d x & =\underbrace{\int_{1}^{6} f(x) d x}_{=4}+\underbrace{\int_{6}^{5} f(x) d x}_{-1=-\int_{5}^{6} f(x) d x} \\
& =3
\end{aligned}
$$

15. [5 pts] Compute $\int(x+2) \sqrt{x} d x$
(A) $\frac{3}{2} \sqrt{x}+\frac{2}{\sqrt{x}}+C$
(C) $\frac{1}{2} x^{2}+2 x+C$
(E) $\frac{1}{2} x^{2}-x^{\frac{3}{2}}+x+C$
(B) $\frac{2}{3} x^{\frac{3}{2}}-\sqrt{x}+C$
(4) $\frac{2}{5} x^{\frac{5}{2}}+\frac{4}{3} x^{3 / 2}+C$

$$
\begin{aligned}
& =\int(x \sqrt{x}+2 \sqrt{x}) d x \\
& =\int\left(x^{3 / 2}+2 x^{1 / 2}\right) d x
\end{aligned}
$$

$$
=\frac{2}{5} x^{5 / 2}+2 \cdot \frac{2}{3} x^{3 / 2}+C
$$

$$
=\frac{2}{5} x^{5 / 2}+\frac{4}{3} x^{3 / 2}+C
$$

\qquad -pTs
16. [5 pts] Which functions), whose graph is below, has a non-zero average value over the closed interval $[-\pi, \pi]$. [Recall: The average value of a function f on $[a, b]$ is $f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.]

- $f_{\text {ave }}=0$ in $A, B \forall D$
as $f(x)$ is an odd function integrated between symmetric bounds.
- $f_{\text {are }}=0$ in C as there is as much area above the x-axis as
there is below
$\therefore R$ is the answer.
(A) A
(C) C
(B) B
(D) D
(B)

(D)

Part II: Free Response
Show all your work neatly and in a structured way.
prs 17. [10 pts] (Spring 2022) Use logarithmic differentiation to find the derivative of the function:

$$
y=x^{\cos x} . \quad[*]
$$

The final answer must be a function of x. Remember to use correct notation to write your final answer.

Take \ln of both sides of $[*]$: $\ln y=\underbrace{\cos x \ln x} \quad[* *]$ Differentiate both sides of $[* *]$ with respect to x :

$$
\frac{y^{\prime}}{y}=\cos x \cdot \frac{1}{x}-\sin x \ln x
$$

In the above equation, isolate y^{\prime} :

$$
y^{\prime}=\left(\cos x \cdot \frac{1}{x}-\sin x \ln x\right) x^{\cos x}
$$

18. [10 pts] (Fall 2022) Determine $\frac{d y}{d x}$ given that $y^{3}-4 y=x^{2} e^{y}$. Express $\frac{d y}{d x}$ as a function of x and y.

Same as above: $\quad 3 y^{2} y^{\prime}-4 y^{\prime}=x^{2} e^{y} y^{\prime}+2 x e^{y}$
Isolate $y^{\prime}: \quad y^{\prime}=\frac{2 x e^{y}}{3 y^{2}-4-x^{2} e^{y}}$
prs 19. [10 pts] Compute the following limits:
(a) (Spring 2019) $\lim _{x \rightarrow 0} \frac{\sin x-x}{1-\cos x}$

$$
\begin{aligned}
& \text { [曹] } \\
& =\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin x} \\
& \text { [只] } \\
& \text { L'Hopital again } \\
& =\lim _{x \rightarrow 0} \frac{-\sin x}{\cos x} \\
& {\left[\frac{0}{1}\right]} \\
& =0
\end{aligned}
$$

(b) (Spring 2023) $\lim _{x \rightarrow 0} \frac{e^{2 x}-2}{e^{x}+1}$

$$
\stackrel{\left[\frac{-1}{2}\right]}{=}-\frac{1}{2}
$$

20. [10 pts] Use a linear approximation (or differentials) to estimate $e^{-0.02}$.

$$
\begin{aligned}
e^{-0.02} & \approx e^{0}+\left.\left(e^{x}\right)\right|_{x=0}(-0.02-0) \\
& \approx 1+1(-0.02) \\
& \approx 0.98
\end{aligned}
$$

\qquad 21. [10 pts] The table below shows the speed $v(t)$ of a runner at a given time t. Time is given in seconds and speed in meters per second.

$\mathrm{t}[\mathrm{s}]$	$\mathrm{v}(\mathrm{t})[\mathrm{m} / \mathrm{s}]$
0	0
0.5	4.58
1	6.81
1.5	7.90
2	8.31
2.5	9.22
3	10.14

(a) Using correct units, interpret the meaning of $\int_{0.5}^{2} v(t) d t$.
(b) Use a left Riemann sum with the three subintervals $[0.5,1],[1,1.5]$, and $[1.5,2]$ to approximate $\int_{0.5}^{2} v(t) d t$.
a) $\int_{0.5}^{2} v(t) d t$ represents the distance in meters that the sumer covered between 0.5 s and 2 s .
b) $\int_{0.5}^{2} v(t) d t \approx 0.5[4.58+6.81+7.90]=9.645$
22. [10 pts] Given $f(x)=\frac{e^{x^{2}+1}}{x \arctan (x)}$, what is $f^{\prime}(x)$?

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x \tan ^{-1}(x) \cdot 2 x e^{x^{2}+1}-e^{x^{2}+1}\left(x \cdot \frac{1}{1+x^{2}}+\tan ^{-1}(x)\right)}{\left(x \tan ^{-1}(x)\right)^{2}} \\
& =\frac{e^{x^{2}+1}\left(2 x^{2} \tan ^{-1} x-\frac{x}{1+x^{2}}-\tan ^{-1} x\right)}{\left(x \tan ^{-1}(x)\right)^{2}}
\end{aligned}
$$

23. [10 pts] The velocity of a particle traveling upwards is given by $v(t)=e^{2 t}$ feet/second. If the height of the particle is 3 feet at $t=1$ second, at what time is the height 6 feet?

$$
\begin{aligned}
h(t) & =\int v(t) d t \\
& =\int e^{2 t} d t \\
& =\frac{e^{2 t}}{2}+C
\end{aligned}
$$

initial condition: When $t=1, h=3$. Slugging it into $[*]$:

$$
\begin{aligned}
& 3=\frac{e^{2}}{2}+c \Rightarrow c=3-\frac{e^{2}}{2} \\
& h(t)=\frac{e^{2 t}}{2}+3-\frac{e^{2}}{2} \\
& 6=\frac{e^{2 t}}{2}+3-\frac{e^{2}}{2} \\
& \Leftrightarrow e^{2 t}=\frac{\ln \left(6+e^{2}\right)}{\ln \left(6+e^{2}\right)} \\
& \Leftrightarrow \\
& \Leftrightarrow t=2 t
\end{aligned}
$$

\qquad
prs
24. [10 pts] The graph of $y=f^{\prime}(x)$, the derivative function of $f(x)$, is shown below. Assume that $f(x)$ is defined and continuous on $[-2,2]$. Give a complete answer to the following questions.

(a) (2pts) What are the x coordinates of all critical points of $f(x)$? - If there aren't any, write NONE.

$$
\text { ANSWER: } x=-2,0,2
$$

(b) (2pts) What are the x coordinates of all local minima of $f(x)$? - If there aren't any, write NONE.

ANSWER: NONE
(c) (2pts) What are the intervals where $f(x)$ is concave up? - If there aren't any, write NONE.

ANSWER: $(-2,-1),(1,2)$
(d) (2pts) What are the x coordinates of all inflection points of $f(x)$? - If there aren't any, write NONE.

ANSWER: $x=-1,1$
(e) (2pts) What are the intervals where $f(x)$ is increasing? - If there aren't any, write NONE.

ANSWER: $(-2,0)$
\qquad 25. [10 pts] Compute $\int \frac{\pi^{2} \sin ^{2} \pi x}{\sec \pi x} d x$.

$$
\begin{aligned}
& \text { let } \begin{array}{l}
u=\sin (\pi x) \\
d u=\pi \cos (\pi x) d x \\
=\int \pi u^{2} d u \\
=\frac{\pi}{3}+C \\
=\frac{\pi}{3} \sin ^{3}(\pi x)+C
\end{array} .
\end{aligned}
$$

PTS
26. [10 pts] What is the absolute maximum and the absolute minimum of the function $f(x)=$ $x^{4}-4 \pi^{3} x+1$ on the interval $[-1,4]$?

$$
f^{\prime}(x)=4 x^{3}-4 \pi^{3}=0 \quad \text { at } \underbrace{x=\pi}_{\text {critical }} \in[-1,4]
$$

$$
\begin{aligned}
& f(-1)=2+4 \pi^{3} \\
& f(\pi)=1-3 \pi^{4} \\
& f(4)=257-16 \pi^{3}
\end{aligned}
$$

$f(x)$ has an absolute minimum of $1-3 \pi^{4}$ at $x=\pi$ and absolute maximum of $2+4 \pi^{3}$ at $x=-1$.
27. [10 pts] Find the derivative of the function:

$$
f(x)=\frac{x(x-5)^{x-2}}{\sin ^{5}(x)}
$$

The final answer must be a function of x. Remember to use correct notation to write your final answer.

Here one can either write Using the latter:

$$
\begin{aligned}
\ln f(x) & =\ln x+(x-2) \ln (x-5)-5 \ln (\sin x) \\
f^{\prime}(x) & =\frac{1}{x}+\frac{x-2}{x-5}+\ln (x-5)-5 \frac{\cos x}{\sin x} \\
f^{\prime}(x) & =\left(\frac{1}{x}+\frac{x-2}{x-5}+\ln (x-5)-5 \cot (x)\right) \cdot \frac{x(x-5)^{x-2}}{\sin ^{5}(x)}
\end{aligned}
$$

___prs 28. [10 pts] What is the function $\phi^{\prime}(x)$, if $\phi(x)=\int_{x+1}^{x^{2}} \frac{\sin t}{t^{2}+1} d t$?

$$
\begin{aligned}
\phi(x) & =\int_{x+1}^{1} \frac{\sin t}{t^{2}+1} d t+\int_{1}^{x^{2}} \frac{\sin t}{t^{2}+1} d t \\
& =-\int_{1}^{x+1} \frac{\sin t}{t^{2}+1} d t+\int_{1}^{x^{2}} \frac{\sin t}{t^{2}+1} d t
\end{aligned}
$$

By the Fundamental Theorem of Calculus:

$$
\phi^{\prime}(x)=-\frac{\sin (x+1)}{(x+1)^{2}+1}+\frac{\sin \left(x^{2}\right)}{x^{4}+1} \cdot 2 x
$$

29. [10 pts] A plane flies horizontally at an altitude of 2 km and passes directly over a radar located on the ground. When the angle of elevation is 60°, this angle is decreasing at a rate of $30^{\circ} / \mathrm{min}$. How fast is the plane at that time?

II Everything should be in radians; otherwise the derivative of the trigonometric functions is not correct!

Data:

$$
\frac{d \theta}{d t}=-\frac{\pi}{6}\left[\frac{\mathrm{sad}}{\min]} \text { When } \theta=\frac{\pi}{3}[\mathrm{sad}]\right.
$$

Question:
What is $\frac{d x}{d t}$ when $\theta=\frac{\pi}{3}$ rad??

Let $x(t)$ be the horizontal distance covered by the plane at time t.

$$
\begin{aligned}
& x(t)=\frac{2}{\tan (\theta(t))}=2 \cot (\theta(t)) \\
& x^{\prime}(t)=-2 \csc ^{2}(\theta(t)) \cdot \theta^{\prime}(t)
\end{aligned}
$$

When $\theta=\frac{\pi}{3}$ and $\theta^{\prime}=-\frac{\pi}{6}$

$$
\begin{aligned}
x^{\prime}(t) & =-2 \cdot \csc ^{2}\left(\frac{\pi}{3}\right) \cdot\left(-\frac{\pi}{6}\right) \\
& =-2 \cdot \frac{4}{3} \cdot\left(-\frac{\pi}{6}\right) \\
& =\frac{4 \pi}{9}[\mathrm{lem} / \mathrm{min}] \\
x^{\prime}(t) & =\frac{4 \pi}{9} \quad \mathrm{~km} / \mathrm{min}
\end{aligned}
$$

30. [10 pts] Daws Food Inc. wishes to design a can of a volume of $100 \mathrm{~cm}^{3}$ using the least amount of metal as possible. The can has to be cylindrical with a lid and a bottom. Find the dimensions it should use.
(a) (2pts) Sketch the can, label the height with h and the radius with R.

$$
V=100 \mathrm{~cm}^{3}=\pi R^{2} h
$$

(b) (4pts) Express the exterior area $A(h)$ (in cm^{2}) of the can in terms of h, and give a reasonable domain for A.

$$
\begin{aligned}
A & =2 A\left(\frac{R}{2 \pi}\right)+A(\sqrt{2 \pi R}) \\
& =2 \pi R^{2}+2 \pi R h \\
& =2 \pi\left(\frac{100}{\pi h}\right)+2 \pi \cdot \frac{10}{\sqrt{\pi h}} \cdot h=\frac{200}{h}+20 \sqrt{\pi h}, \operatorname{dom}(A)=(0, \infty)
\end{aligned}
$$

(c) (4pts) Find the value of h for which the can requires a minimal amount of metal.

$$
\begin{aligned}
A^{\prime} & =-\frac{200}{h^{2}}+10 \sqrt{\pi} \cdot \frac{1}{\sqrt{h}} \\
& =\frac{-200+10 \sqrt{\pi} h^{3 / 2}}{h^{2}}
\end{aligned}
$$

represents a minimum.
$\left.\operatorname{sign}^{h} \left\lvert\,\left(\frac{H 00}{\pi}\right)^{1 / 3}-\infty\right.\right)$ which shows that the minimum of A is
of $A^{\prime} \left\lvert\,+\quad l^{1}+\frac{3}{\frac{400}{2}}\right.$.

