99 PROBLEMS

ENKA LAKURIQI

Legend: (*) harder; (**) even harder

1. Some algebra

- (1) Assuming $h \neq 0$, what is $\frac{f(x+h)-f(x)}{h}$ where $f(x)=(x+1)^2$? Simplify. (2) Find the domain of the function

$$f(x) = \frac{\sqrt{x+2} + \log_2(5-x)}{x}.$$

- (3) (*) Consider the function $f(x) = \ln\left(x + \sqrt{1 + x^2}\right)$. Find the domain of f. Determine the parity of this function, i.e. is it odd, even, or neither?
- (4) What is the equation of the secant line joining the points of the graph $f(x) = 2^x$ whose x-coordinates are respectively 1 and 2?
- (5) Find the point(s) of intersection of the hyperbolas $x^2+3xy=54$ and $xy+4y^2=115$.

2. Limits

Finding the limit at a real value without using l'Hôpital's rule

(6)
$$\lim_{x \to 3} x^2 - 7x + 12 + \sqrt{x^2 - 5} =$$
 (9) $\lim_{x \to 0} \frac{x^4 + 5x - 3}{2 - \sqrt{x^2 + 4}} =$ (7) $\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^2 - 5x + 6} =$ (10) $\lim_{x \to 1} \frac{x^3 - 1}{(x - 1)^2} =$ (8) $\lim_{x \to 4} \frac{3 - \sqrt{x + 5}}{x - 4} =$ (11) (*) $\lim_{x \to 0} x^4 \cos(2/x)$

(9)
$$\lim_{x \to 0} \frac{x^2 + 5x - 3}{2 - \sqrt{x^2 + 4}} =$$

(7)
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^2 - 5x + 6} =$$

(10)
$$\lim_{x \to 1} \frac{x^3 - 1}{(x - 1)^2} =$$

(8)
$$\lim_{x \to 4} \frac{3 - \sqrt{x+5}}{x-4} =$$

(11) (*)
$$\lim_{x\to 0} x^4 \cos(2/x)$$

Date: Version 0.1 - August 9, 2023.

2

Limits of trigonometric type

$$(12) \lim_{x \to 0} \frac{\sin^2 5x}{2x \tan 3x} =$$

(13)
$$\lim_{x\to 0} \frac{\cos 2x - 1}{\cos x - 1} =$$

Limits at infinity

(14)
$$\lim_{x \to -\infty} \frac{7}{x^3 - 4} =$$

(18)
$$\lim_{x \to -\infty} \frac{7x^2 - x + 11}{4 - x} =$$

$$(15) \lim_{x \to \infty} \frac{10}{x^2 + 10} =$$

(19)
$$\lim_{x \to \infty} \frac{x+3}{\sqrt{9x^2-5x}} =$$

$$\begin{array}{l}
x \to -\infty \ x^3 - 4 \\
(15) \lim_{x \to \infty} \frac{10}{x^2 + 10} = \\
(16) \lim_{x \to \infty} \frac{7x^2 + x - 100}{2x^2 - 5x} = \\
(17) \lim_{x \to \infty} x - \sqrt{x^2 + 7} =
\end{array}$$

(18)
$$\lim_{x \to -\infty} \frac{7x^2 - x + 11}{4 - x} =$$
(19)
$$\lim_{x \to \infty} \frac{x + 3}{\sqrt{9x^2 - 5x}} =$$
(20) (*)
$$\lim_{x \to \infty} \left(\frac{x - 2}{x - 1}\right)^x =$$

(17)
$$\lim_{x \to \infty} x - \sqrt{x^2 + 7} =$$

One sided limits

(21)
$$\lim_{x \to 3^+} \frac{x^2 + 3x}{9 - x^2} =$$

(22)
$$\lim_{x \to 3^{-}} \frac{x^2 - 3x}{x^2 - 9} =$$

3. Asymptotes

- (23) The line y = mx + p, with $m \neq 0$ is an oblique asymptote (or slant asymptote) of f(x) iff $\lim_{x\to\infty} \frac{f(x)}{x} = m$ and $\lim_{x\to\infty} f(x) - mx = p$. Show that $f(x) = \sqrt{x^2 - 4x}$ has an oblique asymptote at ∞ and a different one at $-\infty$.
- (24) (*) Show that if f(x) is a rational function then f(x) has an oblique asymptote iff the degree of the numerator is exactly one more than the degree of the denominator. [hint: how can you write f(x) after performing polynomial division?]. Find the oblique asymptote(s) of $f(x) = \frac{x^2 - 6x + 1}{x - 2}$ using (a) the above definition and (b) using long division.
- (25) (*) Can a rational function have two distinct oblique asymptotes?

3

Find all asymptotes (vertical, horizontal and/or oblique) of the following functions

(26)
$$e(x) = \frac{x^2 - 4x}{2x + 1}$$
 (28) $h(x) = \frac{x^4 + 1}{x^2 - 1}$ (27) $f(x) = \frac{2x + 1}{3x + 2}$ (29) $i(x) = \frac{x^3}{x^2 + 1}$ (30) $j(x) = 2x - \sqrt{4x^2 + 4}$

- (31) Find all the asymptotes (if any) to the function $f(x) = \frac{x^2 1}{x|x + 1|}$
- (32) (*) Consider the function $f(x) = ax \sqrt{bx^2 1}$ where $b \ge 0$. For which value(s) of a and b does this function have an oblique asymptote of slope 5 at $-\infty$ and of slope 1 at $+\infty$?

4. Derivatives

(33) Using the limit definition, compute f'(3) where $f(x) = x^2 + \frac{2}{x}$

Compute the derivatives of the following functions:

$$(34) \ f(x) = 4x^5 - 5x^4$$

$$(35) \ g(x) = 3x^2(x^3 + 1)^7$$

$$(36) \ h(x) = \frac{(3x - 1)^2}{x^2 + 2^x}$$

$$(37) \ i(x) = \frac{3\sin(x) + 2}{x^2 + 2^x}$$

$$(38) \ j(x) = (\arctan(2x))^{10}$$

$$(39) \ k(x) = x^7(x^2 - x)^8 \sin^4(x^2)e^{4x}$$

$$(40) \ l(x) = \arcsin(2^{\sin x})$$

$$(41) \ m(x) = \log_5(3x^2 + x)$$

$$(42) \ n(x) = \frac{3\sin(x) + 2}{4\sin(x) + 3}$$

- (43) Determine the following limit quickly: $\lim_{x\to 2} \frac{\sqrt{x^2+5}-3}{x-2}$.
- (44) Find $f'\left(\frac{3\pi}{2}\right)$ where $f(x) = (\cos x + 1)^x$. (45) If f(2) = 3, g(2) = 4, g(3) = 2, f'(2) = 5 and g'(3) = 2 find

$$\left(\frac{f(g(x))+x}{f^2(2x-4)}\right)'$$

at x = 3.

(46) Find $\frac{dy}{dx}$ where y is a differentiable function satisfying $\frac{\sin y}{y^2+1} = 3x$.

5. Tangents

(47) Find the point of intersection of the lines tangent to the graph of $f(x) = x \sin(x)$ at $x = \frac{\pi}{2}$ and $x = \pi$.

- 4
- (48) Find the tangent(s) to the graph of $f(x) = x^2 2x + 1$ passing through the point (4,1).
- (49) Find the equation of the line tangent at (1,1) to the graph of the function

$$y^4 + xy = x^3 - x + 2.$$

(50) (*) (Legendre Transform) Consider a smooth convex function f(x). Pick a slope m and let $f^*(m)$ be the y-intercept of the tangent to the graph of f(x) whose slope is m. Find the function $f^*(m)$ where $f(x) = x^2 - 2x$.

6. Extrema & concavity

- (51) The function $f(x) = a \ln x a^3 x$ has a local minimum at x = 4 for $a \neq 0$. What is a?
- (52) Over which interval is $f(x) = x^3 6x^2 + 3x$ (a) concave up? (b) decreasing?

7. Study of functions

Study the following functions. I.e. find the (1) domain, (2) asymptotes and/or discontinuities, study the (3) growth and (4) concavity; locate (5) all extrema and inflection points; (6) find the roots and (7) sketch the graph

$$(53) \quad x^{3} - 3x^{2}$$

$$(54) \quad x^{4} - 2x^{3}$$

$$(55) \quad \frac{3x + 4}{2x + 3}$$

$$(56) \quad \frac{x^{3}}{x^{2} - 4}$$

$$(57) \quad \frac{x(x - 3)^{2}}{(x - 2)^{2}}$$

$$(58) \quad \sqrt{1 - x^{2}}$$

$$(59) \quad \sqrt{x^{2} - 1}$$

$$(60) \quad 3\left(\sqrt{x^{2} - 1} - x\right)$$

$$(61) \quad \frac{1}{x} - \frac{1}{x(1 - x)}$$

$$(62) \quad \frac{|x - 2|}{x - 3}$$

$$(63) \quad \frac{|x - 2|}{x} - 3$$

$$(64) \quad (*) \quad 3x^{\frac{2}{3}} - 2x$$

$$(65) \quad \sin(2x) - 2x$$

(66) (*) Consider the function $f(x) = \frac{1}{x^2 - 3x + 2}$. Study and sketch the function. Using the previous graph, plot (a) $\phi(x) = e^{f(x)}$ and, (b) $\psi(x) = f(|x|)$.

8. Varia

- (67) Give a lower bound on the number of roots of $f(x) = \cos(\pi x)/x$ on the interval [1, 3]. [hint: Intermediate value theorem]
- (68) Suppose that a function f(x) has a maximum at x = 3. True or False? Justify.
 - The function $f^2(x)$ has a maximum at 3.
 - The function $e^{f(x)}$ has a maximum at 3.
 - The function f(x-3) has a maximum at 0.

- (69) Without a calculator estimate $\sin^2(.99\frac{\pi}{4})$.
- (70) If $-1 \le f'(x) \le 3$ for all x in [1,4] and f(2) = 4, find the maximal and minimal possible values of f(4).
- (71) (**) Suppose that $f:[0,1] \to [0,1]$ is a continuous function. Prove that f has a fixed point in [0,1], i.e., there is at least one real number x in [0,1] such that f(x) = x.
- (72) (**) Suppose that g is a continuous function on [0, 2] satisfying f(0) = f(2). Show that there is at least one real number x in [1, 2] with f(x) = f(x-1).
- (73) Suppose that $\sum_{i=1}^{10} a_i = 100$ compute $\sum_{i=1}^{10} (2a_i + 3 i)$.

9. Related Rates

- (74) A 10ft ladder is leaning against the wall. How fast is the bottom of the ladder sliding when the top part is 3ft above the ground and gliding at a rate of 1ft per second.
- (75) A conical cup has a diameter of 4cm and a height of 8cm. How fast is the level dropping when the height is 4cm and the water escapes from the bottom at a rate of $1cm^3$

10. Optimization

- (76) Find the maximal area of rectangle whose sides are parallel to the coordinate axes and whose vertices lie on the curve of equation $x^2 + y^4 = 1$.
- (77) We have $12 m^2$ of material to make a box whose bottom is square and sides are rectangular (the box has no top). What is the maximal volume that such a box can have?

11. Integration

- (78) Using 4 rectangles and the right endpoint method estimate $\int_0^{12} \frac{2}{x+2} dx$.
- (79) Compute the area under the graph of $g(x) = x + 3x^3 \sin(2x) + xe^{x^2} + x^2$ over the interval [-3, 3].

Compute the following integrals

$$(80) \int_{0}^{1} xe^{-x^{2}} dx$$

$$(81) \int_{0}^{1} (\sin x + \cos x)^{2} dx$$

$$(82) \int_{0}^{1} \frac{x^{4} - 3x^{2}}{x^{2}} dx$$

$$(83) \int_{-2}^{3} |x - 1| dx$$

$$(84) \int \frac{x^{3}}{x^{2} + \pi} dx$$

$$(85) \int x5^{2x} dx$$

(86) (*)
$$\int_0^1 \frac{x}{\sqrt{x+1}} \, dx$$

(87) (*)
$$\int \frac{1}{1+e^x} dx$$
(88) (**)
$$\int \frac{1}{1+\sin^2(x)} dx$$

- (89) Compute the area of the region between the parabolas $y = 2x^2 2$ and $y = x^2 + x$. (90) Compute the area of the region bound by $y = x^3 + x$, $y = x^3$, x = -2 and x = 1.

12. Fundamental Theorem of Calculus

(91) Find
$$f'(x)$$
 where $f(x) = \int_x^{x^2} \frac{\sin t}{t} dt$.

13. Graph analysis

Based on the above picture representing the graph of f(x), answer the following questions.

(92)
$$\lim_{x \to 1^{+}} f(x) =$$

(93)
$$\lim_{x \to 2} f(x) =$$

(92)
$$\lim_{x \to 1^{+}} f(x) =$$

(93) $\lim_{x \to 3} f(x) =$
(94) (*) $\lim_{x \to -2^{+}} f(-x) =$
(95) $f'(\frac{3}{2}) =$

$$(95) \ f'\left(\frac{3}{2}\right) =$$

(96)
$$\int_{-1}^{3} f(x) dx$$

(97)
$$F'(4) = \text{where } F(x) = \int_0^x f(t) dt$$

(98) Sketch $f'(x)$
(99) Sketch $F(x) = \int_1^x f(t) dt$

(98) Sketch
$$f'(x)$$

(99) Sketch
$$F(x) = \int_1^x f(t) dt$$

 $\Diamond \Diamond \Diamond$